Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Related tags

Deep LearningETSN
Overview

Efficient Two-Step Networks for Temporal Action Segmentation

This repository provides a PyTorch implementation of the paper Efficient Two-Step Networks for Temporal Action Segmentation.

Requirements

* Python 3.8.5
* pyTorch 1.8.1

You can download packages using requirements.txt.
pip install -r requirements.txt

Datasets

  • Download the data provided by MS-TCN, which contains the I3D features (w/o fine-tune) and the ground truth labels for 3 datasets. (~30GB)
  • Extract it so that you have the data folder in the same directory as train.py.

directory structure

├── config
│   ├── 50salads
│   ├── breakfast
│   └── gtea
├── csv
│   ├── 50salads
│   ├── breakfast
│   └── gtea
├─ dataset ─── 50salads/...
│           ├─ breakfast/...
│           └─ gtea ─── features/
│                    ├─ groundTruth/
│                    ├─ splits/
│                    └─ mapping.txt
├── libs
├── result
├── utils 
├── requirements.txt
├── train.py
├── eval.py
└── README.md

Training and Testing of ETSN

Setting

First, convert ground truth files into numpy array.

python utils/generate_gt_array.py ./dataset

Then, please run the below script to generate csv files for data laoder'.

python utils/builda_dataset.py ./dataset

Training

You can train a model by changing the settings of the configuration file.

python train.py ./config/xxx/xxx/config.yaml

Evaluation

You can evaluate the performance of result after running.

python eval.py ./result/xxx/xxx/config.yaml test

We also provide trained ETSN model in Google Drive. Extract it so that you have the result folder in the same directory as train.py.

average cross validation results

python utils/average_cv_results.py [result_dir]

Citation

If you find our code useful, please cite our paper.

@article{LI2021373,
author = {Yunheng Li and Zhuben Dong and Kaiyuan Liu and Lin Feng and Lianyu Hu and Jie Zhu and Li Xu and Yuhan wang and Shenglan Liu},
journal = {Neurocomputing},
title = {Efficient Two-Step Networks for Temporal Action Segmentation},
year = {2021},
volume = {454},
pages = {373-381},
issn = {0925-2312},
doi = {https://doi.org/10.1016/j.neucom.2021.04.121},
url = {https://www.sciencedirect.com/science/article/pii/S0925231221006998},

}

Contact

For any question, please raise an issue or contact.

Acknowledgement

We appreciate MS-TCN for extracted I3D feature, backbone network and evaluation code.

Appreciating Yuchi Ishikawa shares the re-implementation of MS-TCN with pytorch.

Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023