Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Related tags

Deep LearningETSN
Overview

Efficient Two-Step Networks for Temporal Action Segmentation

This repository provides a PyTorch implementation of the paper Efficient Two-Step Networks for Temporal Action Segmentation.

Requirements

* Python 3.8.5
* pyTorch 1.8.1

You can download packages using requirements.txt.
pip install -r requirements.txt

Datasets

  • Download the data provided by MS-TCN, which contains the I3D features (w/o fine-tune) and the ground truth labels for 3 datasets. (~30GB)
  • Extract it so that you have the data folder in the same directory as train.py.

directory structure

├── config
│   ├── 50salads
│   ├── breakfast
│   └── gtea
├── csv
│   ├── 50salads
│   ├── breakfast
│   └── gtea
├─ dataset ─── 50salads/...
│           ├─ breakfast/...
│           └─ gtea ─── features/
│                    ├─ groundTruth/
│                    ├─ splits/
│                    └─ mapping.txt
├── libs
├── result
├── utils 
├── requirements.txt
├── train.py
├── eval.py
└── README.md

Training and Testing of ETSN

Setting

First, convert ground truth files into numpy array.

python utils/generate_gt_array.py ./dataset

Then, please run the below script to generate csv files for data laoder'.

python utils/builda_dataset.py ./dataset

Training

You can train a model by changing the settings of the configuration file.

python train.py ./config/xxx/xxx/config.yaml

Evaluation

You can evaluate the performance of result after running.

python eval.py ./result/xxx/xxx/config.yaml test

We also provide trained ETSN model in Google Drive. Extract it so that you have the result folder in the same directory as train.py.

average cross validation results

python utils/average_cv_results.py [result_dir]

Citation

If you find our code useful, please cite our paper.

@article{LI2021373,
author = {Yunheng Li and Zhuben Dong and Kaiyuan Liu and Lin Feng and Lianyu Hu and Jie Zhu and Li Xu and Yuhan wang and Shenglan Liu},
journal = {Neurocomputing},
title = {Efficient Two-Step Networks for Temporal Action Segmentation},
year = {2021},
volume = {454},
pages = {373-381},
issn = {0925-2312},
doi = {https://doi.org/10.1016/j.neucom.2021.04.121},
url = {https://www.sciencedirect.com/science/article/pii/S0925231221006998},

}

Contact

For any question, please raise an issue or contact.

Acknowledgement

We appreciate MS-TCN for extracted I3D feature, backbone network and evaluation code.

Appreciating Yuchi Ishikawa shares the re-implementation of MS-TCN with pytorch.

MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022