Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

Related tags

Deep LearningEMOShip
Overview

EMOShip

This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices".

If you use this dataset in your work, please cite our paper:

@article{chang2021memx,
  title={MemX: An Attention-Aware Smart Eyewear System for Personalized Moment Auto-capture},
  author={Chang, Yuhu and Zhao, Yingying and Dong, Mingzhi and Wang, Yujiang and Lu, Yutian and Lv, Qin and Dick, Robert P and Lu, Tun and Gu, Ning and Shang, Li},
  journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
  year={2021},
  doi = {10.1145/3463509}
}

TBD

Dataset

The data of EMO-Film dataset is collected in a controlled laboratory environment. The video clips were selected from the FilmStim dataset, as FilmStim is one of the widely-used emotion-eliciting video dataset. We divided all videos of FilmStim dataset (64 video clips in total) into 7 categories based on the provided sentiment labels, each category corresponding to one emotional class (the neutral plus six basic emotion). The detailed description was given in Section 4.1 in the paper.

Due to the privacy concerns raised by some volunteers, we cannot release the full dataset with all 25 the subjects included. However, following the outcomes of the privacy survey, we are able to make public a filtered version of our dataset, which consists of 16 subjects giving their permissions to release the data. The videos from the rest 9 participants are therefore omitted to protect their privacy.

The dataset can be downloaded here (TBD).

Data Format

EMO-Film has two parts and a csv file:

eye.tar.gz: This compressed package contains eye images captured when each participant watched different video segments. It contains 16 folders, each corresponding to participants. There are two subfolders under each user folder, corresponding to the two video clips watched by the participant. Each subfolder contains eye images stored in JPG format.

filmstim.tar.gz: This compressed package contains the 64 video clips mentioned above. There are 64 folders corresponding to 64 video clips, and each folder contains the frames in JPG format of video clips.

label.csv: This CSV file contains the corresponding relationship between the eye part and the filmstim part, as well as the gaze position of the eyes and the user's emotion annotation.

It contains the following attributes:

user: The participant number.

eye_frame_path: The relative path of eye image frame. The frame has cropped to preserve only the eye area.

world_frame_path: The relative path of filmstim image frame. Please note that participants actually watched video clips from the display with glasses. After post-processing, the area outside the monitor has been excluded. Here is the content displayed on the monitor, that is, the frame of FilmStim dataset.

gaze_x and gaze_y: The gaze position in the space of the scene frame. The are floating point numbers and origin 0,0 at the bottom left and 1,1 at the top right. Please note that corresponding to the above, the areas outside the screen have been excluded.

PD_x and PD_y: The pupil diameter in pixels in two axial directions.

confidence: The confidence of pupil position. A value of 0 indicates no confidence and 1 indicates perfect confidence.

label: The emotion categories marked by the user, 0-6 respectively indicate angry, disgust, fear, happy, sad, surprise, and neutral.

Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022