Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

Related tags

Deep LearningEMOShip
Overview

EMOShip

This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices".

If you use this dataset in your work, please cite our paper:

@article{chang2021memx,
  title={MemX: An Attention-Aware Smart Eyewear System for Personalized Moment Auto-capture},
  author={Chang, Yuhu and Zhao, Yingying and Dong, Mingzhi and Wang, Yujiang and Lu, Yutian and Lv, Qin and Dick, Robert P and Lu, Tun and Gu, Ning and Shang, Li},
  journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
  year={2021},
  doi = {10.1145/3463509}
}

TBD

Dataset

The data of EMO-Film dataset is collected in a controlled laboratory environment. The video clips were selected from the FilmStim dataset, as FilmStim is one of the widely-used emotion-eliciting video dataset. We divided all videos of FilmStim dataset (64 video clips in total) into 7 categories based on the provided sentiment labels, each category corresponding to one emotional class (the neutral plus six basic emotion). The detailed description was given in Section 4.1 in the paper.

Due to the privacy concerns raised by some volunteers, we cannot release the full dataset with all 25 the subjects included. However, following the outcomes of the privacy survey, we are able to make public a filtered version of our dataset, which consists of 16 subjects giving their permissions to release the data. The videos from the rest 9 participants are therefore omitted to protect their privacy.

The dataset can be downloaded here (TBD).

Data Format

EMO-Film has two parts and a csv file:

eye.tar.gz: This compressed package contains eye images captured when each participant watched different video segments. It contains 16 folders, each corresponding to participants. There are two subfolders under each user folder, corresponding to the two video clips watched by the participant. Each subfolder contains eye images stored in JPG format.

filmstim.tar.gz: This compressed package contains the 64 video clips mentioned above. There are 64 folders corresponding to 64 video clips, and each folder contains the frames in JPG format of video clips.

label.csv: This CSV file contains the corresponding relationship between the eye part and the filmstim part, as well as the gaze position of the eyes and the user's emotion annotation.

It contains the following attributes:

user: The participant number.

eye_frame_path: The relative path of eye image frame. The frame has cropped to preserve only the eye area.

world_frame_path: The relative path of filmstim image frame. Please note that participants actually watched video clips from the display with glasses. After post-processing, the area outside the monitor has been excluded. Here is the content displayed on the monitor, that is, the frame of FilmStim dataset.

gaze_x and gaze_y: The gaze position in the space of the scene frame. The are floating point numbers and origin 0,0 at the bottom left and 1,1 at the top right. Please note that corresponding to the above, the areas outside the screen have been excluded.

PD_x and PD_y: The pupil diameter in pixels in two axial directions.

confidence: The confidence of pupil position. A value of 0 indicates no confidence and 1 indicates perfect confidence.

label: The emotion categories marked by the user, 0-6 respectively indicate angry, disgust, fear, happy, sad, surprise, and neutral.

TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022