Mmdet benchmark with python

Overview

mmdet_benchmark

本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。

配置与环境

机器配置

CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz
GPU:NVIDIA GeForce RTX 3080 10GB
内存:64G
硬盘:1TB NVME SSD

mmdet 环境

Python: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3080
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_10.2_r440.TC440_70.29663091_0
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.9.1+cu111
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.0.5
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.10.1+cu111
OpenCV: 4.5.4
MMCV: 1.3.17
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.1
MMDetection: 2.19.0+

时间分析

Mask R-CNN 的推断过程包含以下几个步骤,我们在一些可能是瓶颈的位置增加了时间统计:

注意:mask post-processing 的时间包含在 roi_head 里,所以减少 mask post-processing 的时间就是在减少 roi_head 的时间。

使用标准尺寸测试(1333x800)

测试图片:

stage pre-processing backbone rpn_head mask forward mask post-processing roi_head total
inference 13.45 24.87 10.16 3.84 15.74 23.49 72.3
inference_fp16 13.53 15.98 8.34 3.36 15.74 22.97 61.4
inference_fp16_preprocess 1.75 15.91 8.21 3.33 15.61 22.69 49.03
inference_raw_mask 1.65 15.93 8.34 3.36 1.74 8.89 33.45

使用较大尺寸测试(3840x2304)

stage pre-processing backbone rpn_head mask forward mask post-processing roi_head total
inference 128.44 187.24 69.96 6.01 173.72 183.95 569.92
inference_fp16 127.28 120.10 50.30 6.80 172.42 186.81 485.04
inference_fp16_preprocess 11.02 120.20 50.18 6.82 174.62 187.07 379.00
inference_raw_mask 11.03 120.26 50.46 6.81 2.99 15.34 197.69

可视化

mmdet 原版:

加速版:

目测没有显著差异。

总结

  • 使用 wrap_fp16_model 可以节省 backbone 的时间,但是不是所有情况下的 forward 都能节省时间;
  • 使用 torchvision.transforms.functional 去做图像预处理,可以极大提升推断速度;
  • 使用 FCNMaskHeadWithRawMask,避免对 mask 进行 resize,对越大的图像加速比越高,因为 resize 到原图大小的成本很高;
  • 后续优化,需要考虑 backbonerpn_head 的优化,可以使用 TensorRT 进行加速。

原理分析

fp16

把一些支持 fp16 的层使用 fp16 来推断,可以充分利用显卡的 TensorCore,加速 forward 部分的速度。

参考链接:https://zhuanlan.zhihu.com/p/375224982

在 backbone 上,时间从 24.87 降到 15.93,在大图上从 187.24 降到 120.26,提升 35% 左右。

torchvision.transforms.functional

使用 pytorch 的 resize、pad、normalize,可以利用上 GPU 而不是 CPU。我们在推断过程中,CPU 利用率始终是最高的,而 GPU 利用率几乎没有满过,所以只要能够把 CPU 的事情交给 GPU 做,就能解决瓶颈问题,减少推断时间。

由于整个过程都可以使用 GPU,所以时间从 13.45 降低到 1.65,在大图上从 128.44 降低到 11.03,提升 10 倍左右。

FCNMaskHeadWithRawMask

首先我们看看 mmdet 处理的结果格式:

可以看到,有多少个 bbox,就有多少个 segm,每个 segm 都是原图尺寸。不管是 CPU,还是内存,都需要大量的时间去处理。

然后再看看 FCNMaskHeadWithRawMask 处理的格式:

每个结果都是 28x28 的,这也是模型原始输出,所以信息量和上面是一样的。

唯一的区别是,我们在拿到结果之后,如果要可视化,需要 resize 到 bbox 的大小,参考 detect/utils_visualize.py#L36-L40

使用 FCNMaskHeadWithRawMask 可以从 15.74 降到 1.74,大图可以从 173.72 降到 2.99,也就是说,图越大,这个加速比越大。

You might also like...
OpenMMLab Semantic Segmentation Toolbox and Benchmark.
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab Pose Estimation Toolbox and Benchmark.
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

RoboDesk A Multi-Task Reinforcement Learning Benchmark
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

NAS Benchmark in
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

Releases(v0.2.1)
Owner
杨培文 (Yang Peiwen)
杨培文 (Yang Peiwen)
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022