Bilinear attention networks for visual question answering

Overview

Bilinear Attention Networks

This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entities tasks.

For the visual question answering task, our single model achieved 70.35 and an ensemble of 15 models achieved 71.84 (Test-standard, VQA 2.0). For the Flickr30k Entities task, our single model achieved 69.88 / 84.39 / 86.40 for [email protected], 5, and 10, respectively (slightly better than the original paper). For the detail, please refer to our technical report.

This repository is based on and inspired by @hengyuan-hu's work. We sincerely thank for their sharing of the codes.

Overview of bilinear attention networks

Updates

  • Bilinear attention networks using torch.einsum, backward-compatible. (12 Mar 2019)
  • Now compatible with PyTorch v1.0.1. (12 Mar 2019)

Prerequisites

You may need a machine with 4 GPUs, 64GB memory, and PyTorch v1.0.1 for Python 3.

  1. Install PyTorch with CUDA and Python 3.6.
  2. Install h5py.

WARNING: do not use PyTorch v1.0.0 due to a bug which induces underperformance.

VQA

Preprocessing

Our implementation uses the pretrained features from bottom-up-attention, the adaptive 10-100 features per image. In addition to this, the GloVe vectors. For the simplicity, the below script helps you to avoid a hassle.

All data should be downloaded to a data/ directory in the root directory of this repository.

The easiest way to download the data is to run the provided script tools/download.sh from the repository root. If the script does not work, it should be easy to examine the script and modify the steps outlined in it according to your needs. Then run tools/process.sh from the repository root to process the data to the correct format.

For now, you should manually download for the below options (used in our best single model).

We use a part of Visual Genome dataset for data augmentation. The image meta data and the question answers of Version 1.2 are needed to be placed in data/.

We use MS COCO captions to extract semantically connected words for the extended word embeddings along with the questions of VQA 2.0 and Visual Genome. You can download in here. Since the contribution of these captions is minor, you can skip the processing of MS COCO captions by removing cap elements in the target option in this line.

Counting module (Zhang et al., 2018) is integrated in this repository as counting.py for your convenience. The source repository can be found in @Cyanogenoid's vqa-counting.

Training

$ python3 main.py --use_both True --use_vg True

to start training (the options for the train/val splits and Visual Genome to train, respectively). The training and validation scores will be printed every epoch, and the best model will be saved under the directory "saved_models". The default hyperparameters should give you the best result of single model, which is around 70.04 for test-dev split.

Validation

If you trained a model with the training split using

$ python3 main.py

then you can run evaluate.py with appropriate options to evaluate its score for the validation split.

Pretrained model

We provide the pretrained model reported as the best single model in the paper (70.04 for test-dev, 70.35 for test-standard).

Please download the link and move to saved_models/ban/model_epoch12.pth (you may encounter a redirection page to confirm). The training log is found in here.

$ python3 test.py --label mytest

The result json file will be found in the directory results/.

Without Visual Genome augmentation

Without the Visual Genome augmentation, we get 69.50 (average of 8 models with the standard deviation of 0.096) for the test-dev split. We use the 8-glimpse model, the learning rate is starting with 0.001 (please see this change for the better results), 13 epochs, and the batch size of 256.

Flickr30k Entities

Preprocessing

You have to manually download Annotation and Sentence files to data/flickr30k/Flickr30kEntities.tar.gz. Then run the provided script tools/download_flickr.sh and tools/process_flickr.sh from the root of this repository, similarly to the case of VQA. Note that the image features of Flickr30k were generated using bottom-up-attention pretrained model.

Training

$ python3 main.py --task flickr --out saved_models/flickr

to start training. --gamma option does not applied. The default hyperparameters should give you approximately 69.6 for [email protected] for the test split.

Validation

Please download the link and move to saved_models/flickr/model_epoch5.pth (you may encounter a redirection page to confirm).

$ python3 evaluate.py --task flickr --input saved_models/flickr --epoch 5

to evaluate the scores for the test split.

Troubleshooting

Please check troubleshooting wiki and previous issue history.

Citation

If you use this code as part of any published research, we'd really appreciate it if you could cite the following paper:

@inproceedings{Kim2018,
author = {Kim, Jin-Hwa and Jun, Jaehyun and Zhang, Byoung-Tak},
booktitle = {Advances in Neural Information Processing Systems 31},
title = {{Bilinear Attention Networks}},
pages = {1571--1581},
year = {2018}
}

License

MIT License

Owner
Jin-Hwa Kim
Jin-Hwa Kim
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022