[CVPR 2021] MiVOS - Scribble to Mask module

Overview

MiVOS (CVPR 2021) - Scribble To Mask

Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang

[arXiv] [Paper PDF] [Project Page]

A simplistic network that turns scribbles to mask. It supports multi-object segmentation using soft-aggregation. Don't expect SOTA results from this model!

Ex1 Ex2

Overall structure and capabilities

MiVOS Mask-Propagation Scribble-to-Mask
DAVIS/YouTube semi-supervised evaluation ✔️
DAVIS interactive evaluation ✔️
User interaction GUI tool ✔️
Dense Correspondences ✔️
Train propagation module ✔️
Train S2M (interaction) module ✔️
Train fusion module ✔️
Generate more synthetic data ✔️

Requirements

The package versions shown here are the ones that I used. You might not need the exact versions.

Refer to the official PyTorch guide for installing PyTorch/torchvision. The rest can be installed by:

pip install opencv-contrib-python gitpython gdown

Pretrained model

Download and put the model in ./saves/. Alternatively use the provided download_model.py.

[OneDrive Mirror]

Interactive GUI

python interactive.py --image <image>

Controls:

Mouse Left - Draw scribbles
Mouse middle key - Switch positive/negative
Key f - Commit changes, clear scribbles
Key r - Clear everything
Key d - Switch between overlay/mask view
Key s - Save masks into a temporary output folder (./output/)

Known issues

The model almost always needs to focus on at least one object. It is very difficult to erase all existing masks from an image using scribbles.

Training

Datasets

  1. Download and extract LVIS training set.
  2. Download and extract a set of static image segmentation datasets. These are already downloaded for you if you used the download_datasets.py in Mask-Propagation.
├── lvis
│   ├── lvis_v1_train.json
│   └── train2017
├── Scribble-to-Mask
└── static
    ├── BIG_small
    └── ...

Commands

Use the deeplabv3plus_resnet50 pretrained model provided here.

CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id s2m --load_deeplab <path_to_deeplab.pth>

Credit

Deeplab implementation and pretrained model: https://github.com/VainF/DeepLabV3Plus-Pytorch.

Citation

Please cite our paper if you find this repo useful!

@inproceedings{MiVOS_2021,
  title={Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion},
  author={Cheng, Ho Kei and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2021}
}

Contact: [email protected]

Comments
  • AttributeError: Caught AttributeError in DataLoader worker process 0

    AttributeError: Caught AttributeError in DataLoader worker process 0

    Hello! I followed the instructions of the training command, it has thrown an error about AttributeError. dataloader_error I put the static folder outside this repository as you mentioned. It is confusing that I can use the same datasets for the pretraining propagation module, the train.py in Mask-Propagation works fine.

    opened by xwhkkk 2
  • git.exc.InvalidGitRepositoryError when running train.py

    git.exc.InvalidGitRepositoryError when running train.py

    Hello! I followed the instruction of the training command, but it has thrown an error about GitRepositoryError. gitError I used command : CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 1842 --nproc_per_node=2 train.py --id s2m --load_deeplab ./deeplab_resnet50/best_deeplabv3plus_resnet50_voc_os16.pth, and I have 2 GPUs. Could you give me some suggestions?

    opened by xwhkkk 2
  • About evaluation of the model

    About evaluation of the model

    Hi,

    thank you for the nice work.

    I have a concern about the evaluation of the model. Because there is no validation set to pick the best model. It may has a potential overfitting problem. (Or what should the validation set for interactive segmentation look like? If there is a unified standard, it will be more helpful for everyone to compare their methods.)

    In interactive object segmentation setting, is this setting popular? I am new here for the interactive segmentation. Wish to solve my concern, thank you.

    opened by Limingxing00 2
  • Question about Local Control Strategy

    Question about Local Control Strategy

    A simple but practical segmentation tool! I've read your paper, and it says that local control strategy is used in S2M. However, I don't find the local control step in this code. Why don't you provide it in this tool? Will local control make significant difference to the performance?

    opened by distillation-dcf 1
  • DeepLabv3 pre-trained models

    DeepLabv3 pre-trained models

    Hello,

    I wanted to mention that in order to train S2M from scratch, using the deeplabv3_resnet50 pre-trained model provided in this repo, returns the following error: KeyError: 'classifier.classifier.0.convs.0.0.weight. Meaning that the weights from this layer are not present in deeplabv3_resnet50. But using the deeplabv3plus_resnet50 from the same repo executes without errors.

    Best!

    opened by UndecidedBoy 1
  • saving error

    saving error

    Hello! Thanks for sharing your code. When I run python interactive.py and want to save the masks, appeared following error.

    image

    Could you give me some suggestions?

    opened by xwhkkk 3
  • Fix simple issues and allow for cpu only use

    Fix simple issues and allow for cpu only use

    I had to make some changes to be able to use the code on cpu only system and had troubles saving the mask from the interactive GUI and fixed it. Thanks for the great work.

    opened by rami-alloush 3
Releases(1.0)
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022