[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Overview

Shape As Points (SAP)

Paper | Project Page | Short Video (6 min) | Long Video (12 min)

This repository contains the implementation of the paper:

Shape As Points: A Differentiable Poisson Solver
Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys and Andreas Geiger
NeurIPS 2021 (Oral)

If you find our code or paper useful, please consider citing

@inproceedings{Peng2021SAP,
 author    = {Peng, Songyou and Jiang, Chiyu "Max" and Liao, Yiyi and Niemeyer, Michael and Pollefeys, Marc and Geiger, Andreas},
 title     = {Shape As Points: A Differentiable Poisson Solver},
 booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
 year      = {2021}}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called sap using

conda env create -f environment.yaml
conda activate sap

Now, you can install PyTorch3D 0.6.0 from the official instruction as follows

pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

And install PyTorch Scatter:

conda install pytorch-scatter -c pyg

Demo - Quick Start

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Optimization-based 3D Surface Reconstruction

You can now quickly test our code on the data shown in the teaser. To this end, simply run:

python optim_hierarchy.py configs/optim_based/teaser.yaml

This script should create a folder out/demo_optim where the output meshes and the optimized oriented point clouds under different grid resolution are stored.

To visualize the optimization process on the fly, you can set o3d_show: Frue in configs/optim_based/teaser.yaml.

Learning-based 3D Surface Reconstruction

You can also test SAP on another application where we can reconstruct from unoriented point clouds with either large noises or outliers with a learned network.

For the point clouds with large noise as shown above, you can run:

python generate.py configs/learning_based/demo_large_noise.yaml

The results can been found at out/demo_shapenet_large_noise/generation/vis.

As for the point clouds with outliers, you can run:

python generate.py configs/learning_based/demo_outlier.yaml

You can find the reconstrution on out/demo_shapenet_outlier/generation/vis.

Dataset

We have different dataset for our optimization-based and learning-based settings.

Dataset for Optimization-based Reconstruction

Here we consider the following dataset:

Please cite the corresponding papers if you use the data.

You can download the processed dataset (~200 MB) by running:

bash scripts/download_optim_data.sh

Dataset for Learning-based Reconstruction

We train and evaluate on ShapeNet. You can download the processed dataset (~220 GB) by running:

bash scripts/download_shapenet.sh

After, you should have the dataset in data/shapenet_psr folder.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

Usage for Optimization-based 3D Reconstruction

For our optimization-based setting, you can consider running with a coarse-to-fine strategy:

python optim_hierarchy.py configs/optim_based/CONFIG.yaml

We start from a grid resolution of 32^3, and increase to 64^3, 128^3 and finally 256^3.

Alternatively, you can also run on a single resolution with:

python optim.py configs/optim_based/CONFIG.yaml

You might need to modify the CONFIG.yaml accordingly.

Usage for Learning-based 3D Reconstruction

Mesh Generation

To generate meshes using a trained model, use

python generate.py configs/learning_based/CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use a pre-trained model

The easiest way is to use a pre-trained model. You can do this by using one of the config files with postfix _pretrained.

For example, for 3D reconstruction from point clouds with outliers using our model with 7x offsets, you can simply run:

python generate.py configs/learning_based/outlier/ours_7x_pretrained.yaml

The script will automatically download the pretrained model and run the generation. You can find the outputs in the out/.../generation_pretrained folders.

Note config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

We provide the following pretrained models:

noise_small/ours.pt
noise_large/ours.pt
outlier/ours_1x.pt
outlier/ours_3x.pt
outlier/ours_5x.pt
outlier/ours_7x.pt
outlier/ours_3plane.pt

Evaluation

To evaluate a trained model, we provide the script eval_meshes.py. You can run it using:

python eval_meshes.py configs/learning_based/CONFIG.yaml

The script takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl and .csv files in the corresponding generation folder that can be processed using pandas.

Training

Finally, to train a new network from scratch, simply run:

python train.py configs/learning_based/CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022