A fast implementation of bss_eval metrics for blind source separation

Overview

fast_bss_eval

Documentation Status black tests

Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ?

Fear no more! fast_bss_eval is here to help you!

fast_bss_eval is a fast implementation of the bss_eval metrics for the evaluation of blind source separation. Our implementation of the bss_eval metrics has the following advantages compared to other existing ones.

  • seamlessly works with both numpy arrays and pytorch tensors
  • very fast
  • can be even faster by using an iterative solver (add use_cg_iter=10 option to the function call)
  • differentiable via pytorch
  • can run on GPU via pytorch

Author

Quick Start

Install

# from pypi
pip install fast-bss-eval

# or from source
git clone https://github.com/fakufaku/fast_bss_eval
cd fast_bss_eval
pip install -e .

Use

Assuming you have multichannel signals for the estmated and reference sources stored in wav format files names my_estimate_file.wav and my_reference_file.wav, respectively, you can quickly evaluate the bss_eval metrics as follows.

from scipy.io import wavfile
import fast_bss_eval

# open the files, we assume the sampling rate is known
# to be the same
fs, ref = wavfile.read("my_reference_file.wav")
_, est = wavfile.read("my_estimate_file.wav")

# compute the metrics
sdr, sir, sar, perm = fast_bss_eval.bss_eval_sources(ref.T, est.T)

Benchmark

This package is significantly faster than other packages that also allow to compute bss_eval metrics such as mir_eval or sigsep/bsseval. We did a benchmark using numpy/torch, single/double precision floating point arithmetic (fp32/fp64), and using either Gaussian elimination or a conjugate gradient descent (solve/CGD10).

Citation

If you use this package in your own research, please cite our paper describing it.

@misc{scheibler_sdr_2021,
  title={SDR --- Medium Rare with Fast Computations},
  author={Robin Scheibler},
  year={2021},
  eprint={2110.06440},
  archivePrefix={arXiv},
  primaryClass={eess.AS}
}

License

2021 (c) Robin Scheibler, LINE Corporation

This code is released under MIT License.

Owner
Robin Scheibler
Engineer. I ❤️ audio, microphone arrays, IoT, Python, and data.
Robin Scheibler
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022