Pytorch Implementation of PointNet and PointNet++++

Overview

Pytorch Implementation of PointNet and PointNet++

This repo is implementation for PointNet and PointNet++ in pytorch.

Update

2021/03/27:

(1) Release pre-trained models for semantic segmentation, where PointNet++ can achieve 53.5% mIoU.

(2) Release pre-trained models for classification and part segmentation in log/.

2021/03/20: Update codes for classification, including:

(1) Add codes for training ModelNet10 dataset. Using setting of --num_category 10.

(2) Add codes for running on CPU only. Using setting of --use_cpu.

(3) Add codes for offline data preprocessing to accelerate training. Using setting of --process_data.

(4) Add codes for training with uniform sampling. Using setting of --use_uniform_sample.

2019/11/26:

(1) Fixed some errors in previous codes and added data augmentation tricks. Now classification by only 1024 points can achieve 92.8%!

(2) Added testing codes, including classification and segmentation, and semantic segmentation with visualization.

(3) Organized all models into ./models files for easy using.

Install

The latest codes are tested on Ubuntu 16.04, CUDA10.1, PyTorch 1.6 and Python 3.7:

conda install pytorch==1.6.0 cudatoolkit=10.1 -c pytorch

Classification (ModelNet10/40)

Data Preparation

Download alignment ModelNet here and save in data/modelnet40_normal_resampled/.

Run

You can run different modes with following codes.

  • If you want to use offline processing of data, you can use --process_data in the first run. You can download pre-processd data here and save it in data/modelnet40_normal_resampled/.
  • If you want to train on ModelNet10, you can use --num_category 10.
# ModelNet40
## Select different models in ./models 

## e.g., pointnet2_ssg without normal features
python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg
python test_classification.py --log_dir pointnet2_cls_ssg

## e.g., pointnet2_ssg with normal features
python train_classification.py --model pointnet2_cls_ssg --use_normals --log_dir pointnet2_cls_ssg_normal
python test_classification.py --use_normals --log_dir pointnet2_cls_ssg_normal

## e.g., pointnet2_ssg with uniform sampling
python train_classification.py --model pointnet2_cls_ssg --use_uniform_sample --log_dir pointnet2_cls_ssg_fps
python test_classification.py --use_uniform_sample --log_dir pointnet2_cls_ssg_fps

# ModelNet10
## Similar setting like ModelNet40, just using --num_category 10

## e.g., pointnet2_ssg without normal features
python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg --num_category 10
python test_classification.py --log_dir pointnet2_cls_ssg --num_category 10

Performance

Model Accuracy
PointNet (Official) 89.2
PointNet2 (Official) 91.9
PointNet (Pytorch without normal) 90.6
PointNet (Pytorch with normal) 91.4
PointNet2_SSG (Pytorch without normal) 92.2
PointNet2_SSG (Pytorch with normal) 92.4
PointNet2_MSG (Pytorch with normal) 92.8

Part Segmentation (ShapeNet)

Data Preparation

Download alignment ShapeNet here and save in data/shapenetcore_partanno_segmentation_benchmark_v0_normal/.

Run

## Check model in ./models 
## e.g., pointnet2_msg
python train_partseg.py --model pointnet2_part_seg_msg --normal --log_dir pointnet2_part_seg_msg
python test_partseg.py --normal --log_dir pointnet2_part_seg_msg

Performance

Model Inctance avg IoU Class avg IoU
PointNet (Official) 83.7 80.4
PointNet2 (Official) 85.1 81.9
PointNet (Pytorch) 84.3 81.1
PointNet2_SSG (Pytorch) 84.9 81.8
PointNet2_MSG (Pytorch) 85.4 82.5

Semantic Segmentation (S3DIS)

Data Preparation

Download 3D indoor parsing dataset (S3DIS) here and save in data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/.

cd data_utils
python collect_indoor3d_data.py

Processed data will save in data/s3dis/stanford_indoor3d/.

Run

## Check model in ./models 
## e.g., pointnet2_ssg
python train_semseg.py --model pointnet2_sem_seg --test_area 5 --log_dir pointnet2_sem_seg
python test_semseg.py --log_dir pointnet2_sem_seg --test_area 5 --visual

Visualization results will save in log/sem_seg/pointnet2_sem_seg/visual/ and you can visualize these .obj file by MeshLab.

Performance

Model Overall Acc Class avg IoU Checkpoint
PointNet (Pytorch) 78.9 43.7 40.7MB
PointNet2_ssg (Pytorch) 83.0 53.5 11.2MB

Visualization

Using show3d_balls.py

## build C++ code for visualization
cd visualizer
bash build.sh 
## run one example 
python show3d_balls.py

Using MeshLab

Reference By

halimacc/pointnet3
fxia22/pointnet.pytorch
charlesq34/PointNet
charlesq34/PointNet++

Citation

If you find this repo useful in your research, please consider citing it and our other works:

@article{Pytorch_Pointnet_Pointnet2,
      Author = {Xu Yan},
      Title = {Pointnet/Pointnet++ Pytorch},
      Journal = {https://github.com/yanx27/Pointnet_Pointnet2_pytorch},
      Year = {2019}
}
@InProceedings{yan2020pointasnl,
  title={PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling},
  author={Yan, Xu and Zheng, Chaoda and Li, Zhen and Wang, Sheng and Cui, Shuguang},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}
@InProceedings{yan2021sparse,
  title={Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning Contextual Shape Priors from Scene Completion},
  author={Yan, Xu and Gao, Jiantao and Li, Jie and Zhang, Ruimao, and Li, Zhen and Huang, Rui and Cui, Shuguang},
  journal={AAAI Conference on Artificial Intelligence ({AAAI})},
  year={2021}
}

Selected Projects using This Codebase

Owner
Luigi Ariano
Luigi Ariano
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer πŸ‘‰ [Preprint] πŸ‘ˆ Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Liβˆ—, Sihan M

Jizhizi_Li 212 Dec 27, 2022