FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

Overview

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation (CVPR 2021)

Eg1 Eg2

[project page] [paper] [Project Video]

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.

Dependencies

We used the following to train and test the model.

  • Ubuntu 18.04
  • Python==3.7.4
  • numpy==1.19.2
  • PyTorch==1.5.0, torchvision==0.6.0, cudatoolkit==10.1

Model

Training model on Vimeo-90K septuplets

For training your own model on the Vimeo-90K dataset, use the following command. You can download the dataset from this link. The results reported in the paper are trained using 8GPUs.

python main.py --batch_size 32 --test_batch_size 32 --dataset vimeo90K_septuplet --loss 1*L1 --max_epoch 200 --lr 0.0002 --data_root <dataset_path> --n_outputs 1

Training on GoPro dataset is similar, change n_outputs to 7 for 8x interpolation.

Testing using trained model.

Trained Models.

You can download the pretrained FLAVR models from the following links.

Method Trained Model
2x Link
4x Link
8x Link

2x Interpolation

For testing a pretrained model on Vimeo-90K septuplet validation set, you can run the following command:

python test.py --dataset vimeo90K_septuplet --data_root <data_path> --load_from <saved_model> --n_outputs 1

8x Interpolation

For testing a multiframe interpolation model, use the same command as above with multiframe FLAVR model, with n_outputs changed accordingly.

Time Benchmarking

The testing script, in addition to computing PSNR and SSIM values, will also output the inference time and speed for interpolation.

Evaluation on Middleburry

To evaluate on the public benchmark of Middleburry, run the following.

python Middleburry_Test.py --data_root <data_path> --load_from <model_path> 

The interpolated images will be saved to the folder Middleburry in a format that can be readily uploaded to the leaderboard.

SloMo-Filter on custom video

You can use our trained models and apply the slomo filter on your own video (requires OpenCV 4.2.0). Use the following command. If you want to convert a 30FPS video to 240FPS video, simply use the command

python interpolate.py --input_video <input_video> --factor 8 --load_model <model_path>

by using our pretrained model for 8x interpolation. For converting a 30FPS video to 60FPS video, use a 2x model with factor 2.

Baseline Models

We also train models for many other previous works on our setting, and provide models for all these methods. Complete benchmarking scripts will also be released soon.

Method PSNR on Vimeo Trained Model
FLAVR 36.3 Model
AdaCoF 35.3 Model
QVI 35.15 Model
DAIN 34.19 Model
SuperSloMo* 32.90 Model
  • SuperSloMo is implemented using code repository from here. Other baselines are implemented using the official codebases.

Google Colab

Coming soon ... !

Acknowledgement

The code is heavily borrowed from Facebook's official PyTorch video repository and CAIN.

Cite

If this code helps in your work, please consider citing us.

@article{kalluri2021flavr,
  title={FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation},
  author={Kalluri, Tarun and Pathak, Deepak and Chandraker, Manmohan and Tran, Du},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tarun K
Deep Learning. Mostly Python, PyTorch and Tensorflow.
Tarun K
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022