Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Related tags

Deep Learningidr
Overview

Multiview Neural Surface Reconstruction
by Disentangling Geometry and Appearance

Project Page | Paper | Data

This repository contains an implementation for the NeurIPS 2020 paper Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance.

The paper introduce Implicit Differentiable Renderer (IDR): a neural network architecture that simultaneously learns the 3D geometry, appearance and cameras from a set of 2D images. IDR able to produce high fidelity 3D surface reconstruction, by disentangling geometry and appearance, learned solely from masked 2D images and rough camera estimates.

Installation Requirmenets

The code is compatible with python 3.7 and pytorch 1.2. In addition, the following packages are required:
numpy, pyhocon, plotly, scikit-image, trimesh, imageio, opencv, torchvision.

You can create an anaconda environment called idr with the required dependencies by running:

conda env create -f environment.yml
conda activate idr

Usage

Multiview 3D reconstruction

Data

We apply our multiview surface reconstruction model to real 2D images from the DTU MVS repository. The 15 scans data, including the manually annotated masks and the noisy initializations for the trainable cameras setup, can be download using:

bash data/download_data.sh 

For more information on the data convention and how to run IDR on a new data please have a look at data convention.

We used our method to generate 3D reconstructions in two different setups:

Training with fixed ground truth cameras

For training IDR run:

cd ./code
python training/exp_runner.py --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID

where SCAN_ID is the id of the DTU scene to reconstruct.

Then, to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

where CHECKPOINT is the epoch you wish to evaluate or 'latest' if you wish to take the most recent epoch. Turning on --eval_rendering will further produce and evaluate PSNR of train image reconstructions.

Training with trainable cameras with noisy initializations

For training IDR with cameras optimization run:

cd ./code
python training/exp_runner.py --train_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID

Then, to evaluate cameras accuracy and to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --eval_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

Evaluation on pretrained models

We have uploaded IDR trained models, and you can run the evaluation using:

cd ./code
python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID  --checkpoint 2000 [--eval_rendering]

Or, for trained cameras:

python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint 2000 --eval_cameras [--eval_rendering]

Disentanglement of geometry and appearance

For transferring the appearance learned from one scene to unseen geometry, run:

cd ./code
python evaluation/eval_disentanglement.py --geometry_id GEOMETRY_ID --appearance_id APPEARANCE _ID

This script will produce novel views of the geometry of the GEOMETRY_ID scan trained model, and the rendering of the APPEARANCE_ID scan trained model.

Citation

If you find our work useful in your research, please consider citing:

@article{yariv2020multiview,
title={Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance},
author={Yariv, Lior and Kasten, Yoni and Moran, Dror and Galun, Meirav and Atzmon, Matan and Ronen, Basri and Lipman, Yaron},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}

Related papers

Here are related works on implicit neural representation from our group:

Owner
Lior Yariv
Lior Yariv
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022