Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Related tags

Deep Learningidr
Overview

Multiview Neural Surface Reconstruction
by Disentangling Geometry and Appearance

Project Page | Paper | Data

This repository contains an implementation for the NeurIPS 2020 paper Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance.

The paper introduce Implicit Differentiable Renderer (IDR): a neural network architecture that simultaneously learns the 3D geometry, appearance and cameras from a set of 2D images. IDR able to produce high fidelity 3D surface reconstruction, by disentangling geometry and appearance, learned solely from masked 2D images and rough camera estimates.

Installation Requirmenets

The code is compatible with python 3.7 and pytorch 1.2. In addition, the following packages are required:
numpy, pyhocon, plotly, scikit-image, trimesh, imageio, opencv, torchvision.

You can create an anaconda environment called idr with the required dependencies by running:

conda env create -f environment.yml
conda activate idr

Usage

Multiview 3D reconstruction

Data

We apply our multiview surface reconstruction model to real 2D images from the DTU MVS repository. The 15 scans data, including the manually annotated masks and the noisy initializations for the trainable cameras setup, can be download using:

bash data/download_data.sh 

For more information on the data convention and how to run IDR on a new data please have a look at data convention.

We used our method to generate 3D reconstructions in two different setups:

Training with fixed ground truth cameras

For training IDR run:

cd ./code
python training/exp_runner.py --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID

where SCAN_ID is the id of the DTU scene to reconstruct.

Then, to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

where CHECKPOINT is the epoch you wish to evaluate or 'latest' if you wish to take the most recent epoch. Turning on --eval_rendering will further produce and evaluate PSNR of train image reconstructions.

Training with trainable cameras with noisy initializations

For training IDR with cameras optimization run:

cd ./code
python training/exp_runner.py --train_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID

Then, to evaluate cameras accuracy and to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --eval_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

Evaluation on pretrained models

We have uploaded IDR trained models, and you can run the evaluation using:

cd ./code
python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID  --checkpoint 2000 [--eval_rendering]

Or, for trained cameras:

python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint 2000 --eval_cameras [--eval_rendering]

Disentanglement of geometry and appearance

For transferring the appearance learned from one scene to unseen geometry, run:

cd ./code
python evaluation/eval_disentanglement.py --geometry_id GEOMETRY_ID --appearance_id APPEARANCE _ID

This script will produce novel views of the geometry of the GEOMETRY_ID scan trained model, and the rendering of the APPEARANCE_ID scan trained model.

Citation

If you find our work useful in your research, please consider citing:

@article{yariv2020multiview,
title={Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance},
author={Yariv, Lior and Kasten, Yoni and Moran, Dror and Galun, Meirav and Atzmon, Matan and Ronen, Basri and Lipman, Yaron},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}

Related papers

Here are related works on implicit neural representation from our group:

Owner
Lior Yariv
Lior Yariv
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022