Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Related tags

Deep Learningidr
Overview

Multiview Neural Surface Reconstruction
by Disentangling Geometry and Appearance

Project Page | Paper | Data

This repository contains an implementation for the NeurIPS 2020 paper Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance.

The paper introduce Implicit Differentiable Renderer (IDR): a neural network architecture that simultaneously learns the 3D geometry, appearance and cameras from a set of 2D images. IDR able to produce high fidelity 3D surface reconstruction, by disentangling geometry and appearance, learned solely from masked 2D images and rough camera estimates.

Installation Requirmenets

The code is compatible with python 3.7 and pytorch 1.2. In addition, the following packages are required:
numpy, pyhocon, plotly, scikit-image, trimesh, imageio, opencv, torchvision.

You can create an anaconda environment called idr with the required dependencies by running:

conda env create -f environment.yml
conda activate idr

Usage

Multiview 3D reconstruction

Data

We apply our multiview surface reconstruction model to real 2D images from the DTU MVS repository. The 15 scans data, including the manually annotated masks and the noisy initializations for the trainable cameras setup, can be download using:

bash data/download_data.sh 

For more information on the data convention and how to run IDR on a new data please have a look at data convention.

We used our method to generate 3D reconstructions in two different setups:

Training with fixed ground truth cameras

For training IDR run:

cd ./code
python training/exp_runner.py --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID

where SCAN_ID is the id of the DTU scene to reconstruct.

Then, to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

where CHECKPOINT is the epoch you wish to evaluate or 'latest' if you wish to take the most recent epoch. Turning on --eval_rendering will further produce and evaluate PSNR of train image reconstructions.

Training with trainable cameras with noisy initializations

For training IDR with cameras optimization run:

cd ./code
python training/exp_runner.py --train_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID

Then, to evaluate cameras accuracy and to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --eval_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

Evaluation on pretrained models

We have uploaded IDR trained models, and you can run the evaluation using:

cd ./code
python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID  --checkpoint 2000 [--eval_rendering]

Or, for trained cameras:

python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint 2000 --eval_cameras [--eval_rendering]

Disentanglement of geometry and appearance

For transferring the appearance learned from one scene to unseen geometry, run:

cd ./code
python evaluation/eval_disentanglement.py --geometry_id GEOMETRY_ID --appearance_id APPEARANCE _ID

This script will produce novel views of the geometry of the GEOMETRY_ID scan trained model, and the rendering of the APPEARANCE_ID scan trained model.

Citation

If you find our work useful in your research, please consider citing:

@article{yariv2020multiview,
title={Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance},
author={Yariv, Lior and Kasten, Yoni and Moran, Dror and Galun, Meirav and Atzmon, Matan and Ronen, Basri and Lipman, Yaron},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}

Related papers

Here are related works on implicit neural representation from our group:

Owner
Lior Yariv
Lior Yariv
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022