Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Related tags

Deep Learningidr
Overview

Multiview Neural Surface Reconstruction
by Disentangling Geometry and Appearance

Project Page | Paper | Data

This repository contains an implementation for the NeurIPS 2020 paper Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance.

The paper introduce Implicit Differentiable Renderer (IDR): a neural network architecture that simultaneously learns the 3D geometry, appearance and cameras from a set of 2D images. IDR able to produce high fidelity 3D surface reconstruction, by disentangling geometry and appearance, learned solely from masked 2D images and rough camera estimates.

Installation Requirmenets

The code is compatible with python 3.7 and pytorch 1.2. In addition, the following packages are required:
numpy, pyhocon, plotly, scikit-image, trimesh, imageio, opencv, torchvision.

You can create an anaconda environment called idr with the required dependencies by running:

conda env create -f environment.yml
conda activate idr

Usage

Multiview 3D reconstruction

Data

We apply our multiview surface reconstruction model to real 2D images from the DTU MVS repository. The 15 scans data, including the manually annotated masks and the noisy initializations for the trainable cameras setup, can be download using:

bash data/download_data.sh 

For more information on the data convention and how to run IDR on a new data please have a look at data convention.

We used our method to generate 3D reconstructions in two different setups:

Training with fixed ground truth cameras

For training IDR run:

cd ./code
python training/exp_runner.py --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID

where SCAN_ID is the id of the DTU scene to reconstruct.

Then, to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

where CHECKPOINT is the epoch you wish to evaluate or 'latest' if you wish to take the most recent epoch. Turning on --eval_rendering will further produce and evaluate PSNR of train image reconstructions.

Training with trainable cameras with noisy initializations

For training IDR with cameras optimization run:

cd ./code
python training/exp_runner.py --train_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID

Then, to evaluate cameras accuracy and to produce the meshed surface, run:

cd ./code
python evaluation/eval.py  --eval_cameras --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint CHECKPOINT [--eval_rendering]

Evaluation on pretrained models

We have uploaded IDR trained models, and you can run the evaluation using:

cd ./code
python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_fixed_cameras.conf --scan_id SCAN_ID  --checkpoint 2000 [--eval_rendering]

Or, for trained cameras:

python evaluation/eval.py --exps_folder trained_models --conf ./confs/dtu_trained_cameras.conf --scan_id SCAN_ID --checkpoint 2000 --eval_cameras [--eval_rendering]

Disentanglement of geometry and appearance

For transferring the appearance learned from one scene to unseen geometry, run:

cd ./code
python evaluation/eval_disentanglement.py --geometry_id GEOMETRY_ID --appearance_id APPEARANCE _ID

This script will produce novel views of the geometry of the GEOMETRY_ID scan trained model, and the rendering of the APPEARANCE_ID scan trained model.

Citation

If you find our work useful in your research, please consider citing:

@article{yariv2020multiview,
title={Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance},
author={Yariv, Lior and Kasten, Yoni and Moran, Dror and Galun, Meirav and Atzmon, Matan and Ronen, Basri and Lipman, Yaron},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}

Related papers

Here are related works on implicit neural representation from our group:

Owner
Lior Yariv
Lior Yariv
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent PeƱafiel

Gregory 1 Jan 18, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022