Computing Shapley values using VAEAC

Overview

Shapley values and the VAEAC method

In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features", see Olsen et al. (2021).

The variational autoencoder with arbitrary condiditioning (VAEAC) approach is based on the work of (Ivanov et al., 2019). The VAEAC is an extension of the regular variational autoencoder (Kingma and Welling, 2019). Instead of giving a probabilistic representation for the distribution equation it gives a representation for the conditional distribution equation, for all possible feature subsets equation simultaneously, where equation is the set of all features.

To make the VAEAC methodology work in the Shapley value framework, established in the R-package Shapr (Sellereite and Jullum, 2019), we have made alterations to the original implementation of Ivanov.

The VAEAC model is implemented in Pytorch, hence, that portion of the repository is written in Python. To compute the Shapley values, we have written the necessary R-code to make the VAEAC approach run on top of the R-package shapr.

Setup

In addition to the prerequisites required by Ivanov, we also need several R-packages. All prerequisites are specified in requirements.txt.

This code was tested on Linux and macOS (should also work on Windows), Python 3.6.4, PyTorch 1.0. and R 4.0.2.

To user has to specify the system path to the Python environment and the system path of the downloaded repository in Source_Shapr_VAEAC.R.

Example

The following example shows how a random forest model is trained on the Abalone data set from the UCI machine learning repository, and how shapr explains the individual predictions.

Note that we only use Diameter (continuous), ShuckedWeight (continuous), and Sex (categorical) as features and let the response be Rings, that is, the age of the abalone.

# Import libraries
library(shapr)
library(ranger)
library(data.table)

# Load the R files needed for computing Shapley values using VAEAC.
source("/Users/larsolsen/Desktop/PhD/R_Codes/Source_Shapr_VAEAC.R")

# Set the working directory to be the root folder of the GitHub repository. 
setwd("~/PhD/Paper1/Code_for_GitHub")

# Read in the Abalone data set.
abalone = readRDS("data/Abalone.data")
str(abalone)

# Predict rings based on Diameter, ShuckedWeight, and Sex (categorical), using a random forrest model.
model = ranger(Rings ~ Diameter + ShuckedWeight + Sex, data = abalone[abalone$test_instance == FALSE,])

# Specifying the phi_0, i.e. the expected prediction without any features.
phi_0 <- mean(abalone$Rings[abalone$test_instance == FALSE])

# Prepare the data for explanation. Diameter, ShuckedWeight, and Sex correspond to 3,6,9.
explainer <- shapr(abalone[abalone$test_instance == FALSE, c(3,6,9)], model)
#> The specified model provides feature classes that are NA. The classes of data are taken as the truth.

# Train the VAEAC model with specified parameters and add it to the explainer
explainer_added_vaeac = add_vaeac_to_explainer(
  explainer, 
  epochs = 30L,
  width = 32L,
  depth = 3L,
  latent_dim = 8L,
  lr = 0.002,
  num_different_vaeac_initiate = 2L,
  epochs_initiation_phase = 2L,
  validation_iwae_num_samples = 25L,
  verbose_summary = TRUE)

# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
# the VAEAC distribution approach with parameters defined above
explanation = explain.vaeac(abalone[abalone$test_instance == TRUE][1:8,c(3,6,9)],
                            approach = "vaeac",
                            explainer = explainer_added_vaeac,
                            prediction_zero = phi_0,
                            which_vaeac_model = "best")

# Printing the Shapley values for the test data.
# For more information about the interpretation of the values in the table, see ?shapr::explain.
print(explanation$dt)
#>        none   Diameter  ShuckedWeight        Sex
#> 1: 9.927152  0.63282471     0.4175608  0.4499676
#> 2: 9.927152 -0.79836795    -0.6419839  1.5737014
#> 3: 9.927152 -0.93500891    -1.1925897 -0.9140548
#> 4: 9.927152  0.57225851     0.5306906 -1.3036202
#> 5: 9.927152 -1.24280895    -1.1766845  1.2437640
#> 6: 9.927152 -0.77290507    -0.5976597  1.5194251
#> 7: 9.927152 -0.05275627     0.1306941 -1.1755597
#> 8: 9.927153  0.44593977     0.1788577  0.6895557

# Finally, we plot the resulting explanations.
plot(explanation, plot_phi0 = FALSE)

Citation

If you find this code useful in your research, please consider citing our paper:

@misc{Olsen2021Shapley,
      title={Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features}, 
      author={Lars Henry Berge Olsen and Ingrid Kristine Glad and Martin Jullum and Kjersti Aas},
      year={2021},
      eprint={2111.13507},
      archivePrefix={arXiv},
      primaryClass={stat.ML},
      url={https://arxiv.org/abs/2111.13507}
}

References

Ivanov, O., Figurnov, M., and Vetrov, D. (2019). “Variational Autoencoder with ArbitraryConditioning”. In:International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2014). "Auto-Encoding Variational Bayes". In: 2nd International Conference on Learning Representations, ICLR 2014.

Olsen, L. H. B., Glad, I. K., Jullum, M. and Aas, K. (2021). "Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features".

Sellereite, N. and Jullum, M. (2019). “shapr: An R-package for explaining machine learningmodels with dependence-aware Shapley values”. In:Journal of Open Source Softwarevol. 5,no. 46, p. 2027.

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023