Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Overview

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

This is the master thesis project by Giacomo Arcieri, written at the FZI Research Center for Information Technology (Karlsruhe, Germany).

Introduction

Model-Based Reinforcement Learning (MBRL) has recently become popular as it is expected to solve RL problems with fewer trials (i.e. higher sample efficiency) than model-free methods. However, it is not clear how much of the recent MBRL progress is due to improved algorithms or due to improved models. Hence, this work compares a set of mathematical methods that are commonly used as models for MBRL. This thesis aims to provide a benchmark to assess the model influence on RL algorithms. The evaluated models will be (deterministic) Neural Networks (NNs), ensembles of (deterministic) NNs, Bayesian Neural Networks (BNNs), and Gaussian Processes (GPs). Two different and innovative BNNs are applied: the Concrete Dropout NN and the Anchored Ensembling. The model performance is assessed on a large suite of different benchmarking environments, namely one OpenAI Gym Classic Control problem (Pendulum) and seven PyBullet-Gym tasks (MuJoCo implementation). The RL algorithm the model performance is assessed on is Model Predictive Control (MPC) combined with Random Shooting (RS).

Requirements

This project is tested on Python 3.6.

First, you can perform a minimal installation of OpenAI Gym with

git clone https://github.com/openai/gym.git
cd gym
pip install -e .

Then, you can install Pybullet-Gym with

git clone https://github.com/benelot/pybullet-gym.git
cd pybullet-gym
pip install -e .

Important: Do not use python setup.py install or other Pybullet-Gym installation methods.

Finally, you can install all the dependencies with

pip install -r requirements.txt

Important: There are a couple of changes to make in two Pybullet-Gym envs:

  1. There is currently a mistake in Hopper. This project uses HopperMuJoCoEnv-v0, but this env imports the Roboschool locomotor instead of the MuJoCo locomotor. Open the file
pybullet-gym/pybulletgym/envs/mujoco/envs/locomotion/hopper_env.py

and change

from pybulletgym.envs.roboschool.robots.locomotors import Hopper

with

from pybulletgym.envs.mujoco.robots.locomotors.hopper import Hopper
  1. Ant has obs_dim=111 but only the first 27 obs are important, the others are only zeros. If it is true that these zeros do not affect performance, it is also true they slow down the training, especially for the Gaussian Process. Therefore, it is better to delete these unimportant obs. Open the file
pybullet-gym/pybulletgym/envs/mujoco/robots/locomotors/ant.py

and set obs_dim=27 and comment or delete line 25

np.clip(cfrc_ext, -1, 1).flat

Project Description

Models

The models are defined in the folder models:

  • deterministicNN.py: it includes the deterministic NN (NN) and the deterministic ensemble (ens_NNs).

  • PNN.py: here the Anchored Ensembling is defined following this example. PNN defines one NN of the Anchored Ensembling. This is needed to define ens_PNNs which is the Anchored Ensembling as well as the model applied in the evaluation.

  • ConcreteDropout.py: it defines the Concrete Dropout NN, mainly based on the Yarin Gal's notebook, but also on this other project. First, the ConcreteDropout Layer is defined. Then, the Concrete Dropout NN is designed (BNN). Finally, also an ensemble of Concrete Dropout NNs is defined (ens_BNN), but I did not use it in the model comparison (ens_BNN is extremely slow and BNN is already like an ensemble).

  • GP.py: it defines the Gaussian Process model based on gpflow. Two different versions are applied: the GPR and the SVGP (choose by setting the parameter gp_model). Only the GPR performance is reported in the evaluation because the SVGP has not even solved the Pendulum environment.

RL algorithm

The model performance is evaluated in the following files:

  1. main.py: it is defined the function main which takes all the params that are passed to MB_trainer. Five MB_trainer are initialized, each with a different seed, which are run in parallel. It is also possible to run two models in parallel by setting the param model2 as well.

  2. MB_trainer.py: it includes the initialization of the env and the model as well as the RL training loop. The function play_one_step computes one step of the loop. The model is trained with the function training_step. At the end of the loop, a pickle file is saved, wich includes all the rewards achieved by the model in all the episodes of the env.

  3. play_one_step.py: it includes all the functions to compute one step (i.e. to choose one action): the epsilon greedy policy for the exploration, the Information Gain exploration, and the exploitation of the model with MPC+RS (function get_action). The rewards as well as the RS trajectories are computed with the cost functions in cost_functions.py.

  4. training_step.py: first the relevant information is prepared by the function data_training, then the model is trained with the function training_step.

  5. cost_functions.py: it includes all the cost functions of the envs.

Other two files are contained in the folder rewards:

  • plot_rewards.ipynb: it is the notebook where the model performance is plotted. First, the 5 pickles associated with the 5 seeds are combined in only one pickle. Then, the performance is evaluated with various plots.

  • distribution.ipynb: this notebook inspects the distribution of the seeds in InvertedDoublePendulum (Section 6.9 of the thesis).

Results

Our results show significant differences among models performance do exist.

It is the Concrete Dropout NN the clear winner of the model comparison. It reported higher sample efficiency, overall performance and robustness across different seeds in Pendulum, InvertedPendulum, InvertedDoublePendulum, ReacherPyBullet, HalfCheetah, and Hopper. In Walker2D and Ant it was no worse than the others either.

Authors should be aware of the differences found and distinguish between improvements due to better algorithms or due to better models when they present novel methods.

The figures of the evaluation are reported in the folder rewards/images.

Acknowledgment

Special thanks go to the supervisor of this project David Woelfle.

Owner
Giacomo Arcieri
Giacomo Arcieri
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022