Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Overview

Open-L2O

This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of problems and settings. We release our software implementation and data as the Open-L2O package, for reproducible research and fair benchmarking in the L2O field. [Paper]

License: MIT

Overview

What is learning to optimize (L2O)?

L2O (Learning to optimize) aims to replace manually designed analytic optimization algorithms (SGD, RMSProp, Adam, etc.) with learned update rules.

How does L2O work?

L2O serves as functions that can be fit from data. L2O gains experience from training optimization tasks in a principled and automatic way.

What can L2O do for you?

L2O is particularly suitable for solving a certain type of optimization over a specific distribution of data repeatedly. In comparison to classic methods, L2O is shown to find higher-quality solutions and/or with much faster convergence speed for many problems.

Open questions for research?

  • There are significant theoretical and practicality gaps between manually designed optimizers and existing L2O models.

Main Results

Learning to optimize sparse recovery

Learning to optimize Lasso functions

Learning to optimize non-convex Rastrigin functions

Learning to optimize neural networks

Supported Model-base Learnable Optimizers

All codes are available at here.

  1. LISTA (feed-forward form) from Learning fast approximations of sparse coding [Paper]
  2. LISTA-CP from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  3. LISTA-CPSS from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  4. LFISTA from Understanding Trainable Sparse Coding via Matrix Factorization [Paper]
  5. LAMP from AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [Paper]
  6. ALISTA from ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA [Paper]
  7. GLISTA from Sparse Coding with Gated Learned ISTA [Paper]

Supported Model-free Learnable Optimizers

  1. L2O-DM from Learning to learn by gradient descent by gradient descent [Paper] [Code]
  2. L2O-RNNProp Learning Gradient Descent: Better Generalization and Longer Horizons from [Paper] [Code]
  3. L2O-Scale from Learned Optimizers that Scale and Generalize [Paper] [Code]
  4. L2O-enhanced from Training Stronger Baselines for Learning to Optimize [Paper] [Code]
  5. L2O-Swarm from Learning to Optimize in Swarms [Paper] [Code]
  6. L2O-Jacobian from HALO: Hardware-Aware Learning to Optimize [Paper] [Code]
  7. L2O-Minmax from Learning A Minimax Optimizer: A Pilot Study [Paper] [Code]

Supported Optimizees

Convex Functions:

  • Quadratic
  • Lasso

Non-convex Functions:

  • Rastrigin

Minmax Functions:

  • Saddle
  • Rotated Saddle
  • Seesaw
  • Matrix Game

Neural Networks:

  • MLPs on MNIST
  • ConvNets on MNIST and CIFAR-10
  • LeNet
  • NAS searched archtectures

Other Resources

  • This is a Pytorch implementation of L2O-DM. [Code]
  • This is the original L2O-Swarm repository. [Code]
  • This is the original L2O-Jacobian repository. [Code]

Future Works

  • TF2.0 Implementated toolbox v2 with a unified framework and lib dependency.

Cite

@misc{chen2021learning,
      title={Learning to Optimize: A Primer and A Benchmark}, 
      author={Tianlong Chen and Xiaohan Chen and Wuyang Chen and Howard Heaton and Jialin Liu and Zhangyang Wang and Wotao Yin},
      year={2021},
      eprint={2103.12828},
      archivePrefix={arXiv},
      primaryClass={math.OC}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022