A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

Overview

SGCN

Arxiv repo size codebeat badgebenedekrozemberczki

A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018).

Abstract

Due to the fact much of today's data can be represented as graphs, there has been a demand for generalizing neural network models for graph data. One recent direction that has shown fruitful results, and therefore growing interest, is the usage of graph convolutional neural networks (GCNs). They have been shown to provide a significant improvement on a wide range of tasks in network analysis, one of which being node representation learning. The task of learning low-dimensional node representations has shown to increase performance on a plethora of other tasks from link prediction and node classification, to community detection and visualization. Simultaneously, signed networks (or graphs having both positive and negative links) have become ubiquitous with the growing popularity of social media. However, since previous GCN models have primarily focused on unsigned networks (or graphs consisting of only positive links), it is unclear how they could be applied to signed networks due to the challenges presented by negative links. The primary challenges are based on negative links having not only a different semantic meaning as compared to positive links, but their principles are inherently different and they form complex relations with positive links. Therefore we propose a dedicated and principled effort that utilizes balance theory to correctly aggregate and propagate the information across layers of a signed GCN model. We perform empirical experiments comparing our proposed signed GCN against state-of-the-art baselines for learning node representations in signed networks. More specifically, our experiments are performed on four real-world datasets for the classical link sign prediction problem that is commonly used as the benchmark for signed network embeddings algorithms.

This repository provides an implementation for SGCN as described in the paper:

Signed Graph Convolutional Network. Tyler Derr, Yao Ma, and Jiliang Tang ICDM, 2018. [Paper]

The original implementation is available [here] and SGCN is also available in [PyTorch Geometric].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           2.4
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
scipy              1.1.0
argparse           1.1.0
sklearn            0.20.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

The code takes an input graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. Sample graphs for the `Bitcoin Alpha` and `Bitcoin OTC` graphs are included in the `input/` directory. The structure of the edge dataset is the following:

NODE ID 1 NODE ID 2 Sign
0 3 -1
1 1 1
2 2 1
3 1 -1
... ... ...
n 9 -1

An attributed dataset for an `Erdos-Renyi` graph is also included in the input folder. **The node feature dataset rows are sorted by ID increasing**. The structure of the features csv has to be the following:

Feature 1 Feature 2 Feature 3 ... Feature d
3 0 1.37 ... 1
1 1 2.54 ... -11
2 0 1.08 ... -12
1 1 1.22 ... -4
. ... ... ... ... ...
5 0 2.47 ... 21

Options

Learning an embedding is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path                STR    Input graph path.          Default is `input/bitcoin_otc.csv`.
  --features-path            STR    Features path.             Default is `input/bitcoin_otc.csv`.
  --embedding-path           STR    Embedding path.            Default is `output/embedding/bitcoin_otc_sgcn.csv`.
  --regression-weights-path  STR    Regression weights path.   Default is `output/weights/bitcoin_otc_sgcn.csv`.
  --log-path                 STR    Log path.                  Default is `logs/bitcoin_otc_logs.json`.  

Model options

  --epochs                INT         Number of SGCN training epochs.      Default is 100. 
  --reduction-iterations  INT         Number of SVD epochs.                Default is 128.
  --reduction-dimensions  INT         SVD dimensions.                      Default is 30.
  --seed                  INT         Random seed value.                   Default is 42.
  --lamb                  FLOAT       Embedding regularization parameter.  Default is 1.0.
  --test-size             FLOAT       Test ratio.                          Default is 0.2.  
  --learning-rate         FLOAT       Learning rate.                       Default is 0.01.  
  --weight-decay          FLOAT       Weight decay.                        Default is 10^-5. 
  --layers                LST         Layer sizes in model.                Default is [32, 32].
  --spectral-features     BOOL        Layer sizes in autoencoder model.    Default is True
  --general-features      BOOL        Loss calculation for the model.      Sets spectral features to False.  

Examples

The following commands learn a node embedding, regression parameters and write the embedding to disk. The node representations are ordered by the ID. The layer sizes can be set manually.

Training an SGCN model on the default dataset. Saving the embedding, regression weights and logs at default paths. The regression weight file contains weights and bias (last column).

python src/main.py

``pos_ratio" in the output table gives the ratio of test links predicted to be positive.

Creating an SGCN model of the default dataset with a 96-64-32 architecture.

python src/main.py --layers 96 64 32

Creating a single layer SGCN model with 32 features.

python src/main.py --layers 32

Creating a model with some custom learning rate and epoch number.

python src/main.py --learning-rate 0.001 --epochs 200

Training a model on another dataset with features present - a signed Erdos-Renyi graph. Saving the weights, output and logs in a custom folder.

python src/main.py --general-features --edge-path input/erdos_renyi_edges.csv --features-path input/erdos_renyi_features.csv --embedding-path output/embedding/erdos_renyi.csv --regression-weights-path output/weights/erdos_renyi.csv --log-path logs/erdos_renyi.json

License


Comments
  • F1 score can not match the paper

    F1 score can not match the paper

    It seems that F1 score can not match the paper, for example, I set epoch=200, layers=96 64 32, learning rate=0.001, but on BIT-OTC dataset the F1 score can only reach 0.802.

    I was wondering if there is anything wrong about my experimental settings?

    opened by Coderbai 2
  • How can I run the SGCN with the data containing not numerical ID?

    How can I run the SGCN with the data containing not numerical ID?

    Before starting, thank you for developing the SGCN model. When I tried to run the code, I faced a problem with input data.

    In your example data(bitcoin_otc), all ids have a numerical value. But my data has string data that need to convert to numerical ID. I guess that I should add a converter such as key and library, I'm not sure where should I modify it. Can you suggest the method for running such cases?

    opened by songsong0425 1
  • F1 value in the result stays the same

    F1 value in the result stays the same

    Hi Benedek,

    Thanks for releasing the code!

    I find that the F1 value in the result stays the same. Could you give me some advice on how I should correct it?

    Looking forward to your reply. Thanks!

    opened by Lebesgue-zyker 1
  • BUGFIX: a little problem in ./src/signedsageconvolution.py

    BUGFIX: a little problem in ./src/signedsageconvolution.py

    Hello @benedekrozemberczki :

    I found out a little bug in file ./src/signedsageconvolution.py

    the code below in your file

    edge_index = add_self_loops(edge_index, num_nodes=x.size(0))
    

    should be replaced by

    edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))
    

    i.e. just add , _ after edge_index

    All the add_self_loops lines in the file ./src/signedsageconvolution.py are modified as I typed above.

    (perhaps it is just a slip of the finger... sorry, i just know a slip of the tongue...)

    and finally, it works.

    My Environment is:

    Ubuntu 16.04
    Python 3.7.3
    PyTorch 1.1.0
    PyTorch_Geometric 1.2.1
    PyTorch_Scatter 1.2.0
    

    Yours, @wmf1997

    opened by WMF1997 1
  • ImportError: No module named 'torch_spline_conv'

    ImportError: No module named 'torch_spline_conv'

    (.venv) [email protected]:~/ub16_prj/SGCN$ python src/main.py Traceback (most recent call last): File "src/main.py", line 3, in from sgcn import SignedGCNTrainer File "/home/ub16hp/ub16_prj/SGCN/src/sgcn.py", line 12, in from torch_geometric.nn import SAGEConv File "/home/ub16hp/ub16_prj/SGCN/.venv/lib/python3.5/site-packages/torch_geometric/nn/init.py", line 1, in from .conv import * # noqa File "/home/ub16hp/ub16_prj/SGCN/.venv/lib/python3.5/site-packages/torch_geometric/nn/conv/init.py", line 1, in from .spline_conv import SplineConv File "/home/ub16hp/ub16_prj/SGCN/.venv/lib/python3.5/site-packages/torch_geometric/nn/conv/spline_conv.py", line 3, in from torch_spline_conv import SplineConv as Conv ImportError: No module named 'torch_spline_conv' (.venv) [email protected]:~/ub16_prj/SGCN$

    opened by loveJasmine 1
  • How can I calculate AUPR in SGCN?

    How can I calculate AUPR in SGCN?

    Dear bendek, Greetings, I have a question about the calculation of AUPR in SGCN. I'm trying to get AUPR score by input the below code in utils.py:

    from sklearn.metrics import roc_auc_score, f1_score, average_precision_score, precision_recall_curve, auc, plot_precision_recall_curve
    
    def calculate_auc(targets, predictions, edges):
        """
        Calculate performance measures on test dataset.
        :param targets: Target vector to predict.
        :param predictions: Predictions vector.
        :param edges: Edges dictionary with number of edges etc.
        :return auc: AUC value.
        :return f1: F1-score.
        """
        targets = [0 if target == 1 else 1 for target in targets]
        auc_score = roc_auc_score(targets, predictions)
        #precision, recall, thresholds = precision_recall_curve(targets, predictions)
        #aupr=auc(recall, precision)
        pred = [1 if p > 0.5 else 0 for p in  predictions]
        f1 = f1_score(targets, pred)
        #precision, recall, thresholds = precision_recall_curve(targets, pred)
        #aupr=auc(recall, precision)
        pos_ratio = sum(pred)/len(pred)
        return auc_score, aupr, f1, pos_ratio
    

    But I'm not sure where should I put the new code (#). Does AUPR need to get predictions value or pred value? Also, what the different between predictions and pred? I guess 'predictions' is probability value and 'pred' is binary value, is it right?

    Sorry for frequent edit, but why did you set targets = [0 if target == 1 else 1 for target in targets]? I think that it means give opposite labels to positive and negative edges. (i.e., positive=0, negative=1) I look forward to your reply. Sincerely, Songyeon

    opened by songsong0425 0
  • Fix negative sampling. Avoid invalid samples. Also add regression bias.

    Fix negative sampling. Avoid invalid samples. Also add regression bias.

    The first commit: Fix negative sampling. Avoid sampling positive edges and viewing them as non-edges, and avoid sampling negative edges and viewing them as non-edges. Borrow utility functions from torch_geometric. The trick to avoiding sampling an edge that exists is to map the existent links and the sampled links to some unique numbers (by multiplying the source node with the total number of nodes, then add the target node, ref: https://github.com/rusty1s/pytorch_geometric/blob/712f581642bccc225189fc3eb364ce0642b915a3/torch_geometric/utils/negative_sampling.py#L95) After sampling and mapping, we use NumPy.isin to pick out the invalid links (assumed to be non-existent, but exists), then resample iteratively until no invalid samples exist.

    The second commit: Add a bias term in regression to predict link signs. This is to learn some prior distribution of different types of links: positive, negative and none. The bias term can be helpful in dealing with unbalanced links. In the data sets used in SGCN, most links do not exist, and positive links are much more frequent than negative ones.

    opened by SherylHYX 0
  • fix classifier so that it will not always predict the majority class

    fix classifier so that it will not always predict the majority class

    Fix classifier so that it will not always predict the majority class, also add one column to the output table, change README correspondingly as well.

    There are some problems using a threshold determined by the ratio of negative links: On the one hand, you need to know the ground truth negative link ratio, which is a kind of cheating. On the other hand, due to the high imbalance of positive and negative links, your threshold would be close to zero, resulting in voting the majority class all the time.

    opened by SherylHYX 0
  • self.y should be related to negative_edges and test_negative_edges?

    self.y should be related to negative_edges and test_negative_edges?

    thanks for your code! I have a little question,

    self.y should bu related to negative_edges and test_negative_edges, when we calculate "calculate_regression_loss" function, pos = torch.cat((self.positive_z_i, self.positive_z_j), 1) # [14624, 128] neg = torch.cat((self.negative_z_i, self.negative_z_j), 1) # [2522, 128]

    opened by 529261027 0
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022