SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

Overview

SOLO: Segmenting Objects by Locations

This project hosts the code for implementing the SOLO algorithms for instance segmentation.

SOLO: Segmenting Objects by Locations,
Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, Lei Li
In: Proc. European Conference on Computer Vision (ECCV), 2020
arXiv preprint (arXiv 1912.04488)

SOLOv2: Dynamic and Fast Instance Segmentation,
Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, Chunhua Shen
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020
arXiv preprint (arXiv 2003.10152)

highlights

Highlights

  • Totally box-free: SOLO is totally box-free thus not being restricted by (anchor) box locations and scales, and naturally benefits from the inherent advantages of FCNs.
  • Direct instance segmentation: Our method takes an image as input, directly outputs instance masks and corresponding class probabilities, in a fully convolutional, box-free and grouping-free paradigm.
  • High-quality mask prediction: SOLOv2 is able to predict fine and detailed masks, especially at object boundaries.
  • State-of-the-art performance: Our best single model based on ResNet-101 and deformable convolutions achieves 41.7% in AP on COCO test-dev (without multi-scale testing). A light-weight version of SOLOv2 executes at 31.3 FPS on a single V100 GPU and yields 37.1% AP.

Updates

  • SOLOv2 implemented on detectron2 is released at adet. (07/12/20)
  • Training speeds up (~1.7x faster) for all models. (03/12/20)
  • SOLOv2 is available. Code and trained models of SOLOv2 are released. (08/07/2020)
  • Light-weight models and R101-based models are available. (31/03/2020)
  • SOLOv1 is available. Code and trained models of SOLO and Decoupled SOLO are released. (28/03/2020)

Installation

This implementation is based on mmdetection(v1.0.0). Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following trained models on COCO (more models are coming soon). If you need the models in PaddlePaddle framework, please refer to paddlepaddle/README.md.

Model Multi-scale training Testing time / im AP (minival) Link
SOLO_R50_1x No 77ms 32.9 download
SOLO_R50_3x Yes 77ms 35.8 download
SOLO_R101_3x Yes 86ms 37.1 download
Decoupled_SOLO_R50_1x No 85ms 33.9 download
Decoupled_SOLO_R50_3x Yes 85ms 36.4 download
Decoupled_SOLO_R101_3x Yes 92ms 37.9 download
SOLOv2_R50_1x No 54ms 34.8 download
SOLOv2_R50_3x Yes 54ms 37.5 download
SOLOv2_R101_3x Yes 66ms 39.1 download
SOLOv2_R101_DCN_3x Yes 97ms 41.4 download
SOLOv2_X101_DCN_3x Yes 169ms 42.4 download

Light-weight models:

Model Multi-scale training Testing time / im AP (minival) Link
Decoupled_SOLO_Light_R50_3x Yes 29ms 33.0 download
Decoupled_SOLO_Light_DCN_R50_3x Yes 36ms 35.0 download
SOLOv2_Light_448_R18_3x Yes 19ms 29.6 download
SOLOv2_Light_448_R34_3x Yes 20ms 32.0 download
SOLOv2_Light_448_R50_3x Yes 24ms 33.7 download
SOLOv2_Light_512_DCN_R50_3x Yes 34ms 36.4 download

Disclaimer:

  • Light-weight means light-weight backbone, head and smaller input size. Please refer to the corresponding config files for details.
  • This is a reimplementation and the numbers are slightly different from our original paper (within 0.3% in mask AP).

Usage

A quick demo

Once the installation is done, you can download the provided models and use inference_demo.py to run a quick demo.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM}

Example: 
./tools/dist_train.sh configs/solo/solo_r50_fpn_8gpu_1x.py  8

Train with single GPU

python tools/train.py ${CONFIG_FILE}

Example:
python tools/train.py configs/solo/solo_r50_fpn_8gpu_1x.py

Testing

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  --show --out  ${OUTPUT_FILE} --eval segm

Example: 
./tools/dist_test.sh configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth  8  --show --out results_solo.pkl --eval segm

# single-gpu testing
python tools/test_ins.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --out  ${OUTPUT_FILE} --eval segm

Example: 
python tools/test_ins.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --out  results_solo.pkl --eval segm

Visualization

python tools/test_ins_vis.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --save_dir  ${SAVE_DIR}

Example: 
python tools/test_ins_vis.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --save_dir  work_dirs/vis_solo

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@article{wang2020solov2,
  title={SOLOv2: Dynamic and Fast Instance Segmentation},
  author={Wang, Xinlong and Zhang, Rufeng and  Kong, Tao and Li, Lei and Shen, Chunhua},
  journal={Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Xinlong Wang and Chunhua Shen.

Owner
Xinlong Wang
Xinlong Wang
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022