😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

Overview

------ Update September 2018 ------

It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such that we can make improvements and design better models in the future.

You can help us achieve this by answering this 4-question Google Form. Thanks for your support!

😇 TorchMoji

Read our blog post about the implementation process here.

TorchMoji is a pyTorch implementation of the DeepMoji model developped by Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan and Sune Lehmann.

This model trained on 1.2 billion tweets with emojis to understand how language is used to express emotions. Through transfer learning the model can obtain state-of-the-art performance on many emotion-related text modeling tasks.

Try the online demo of DeepMoji http://deepmoji.mit.edu! See the paper, blog post or FAQ for more details.

Overview

  • torchmoji/ contains all the underlying code needed to convert a dataset to the vocabulary and use the model.
  • examples/ contains short code snippets showing how to convert a dataset to the vocabulary, load up the model and run it on that dataset.
  • scripts/ contains code for processing and analysing datasets to reproduce results in the paper.
  • model/ contains the pretrained model and vocabulary.
  • data/ contains raw and processed datasets that we include in this repository for testing.
  • tests/ contains unit tests for the codebase.

To start out with, have a look inside the examples/ directory. See score_texts_emojis.py for how to use DeepMoji to extract emoji predictions, encode_texts.py for how to convert text into 2304-dimensional emotional feature vectors or finetune_youtube_last.py for how to use the model for transfer learning on a new dataset.

Please consider citing the paper of DeepMoji if you use the model or code (see below for citation).

Installation

We assume that you're using Python 2.7-3.5 with pip installed.

First you need to install pyTorch (version 0.2+), currently by:

conda install pytorch -c pytorch

At the present stage the model can't make efficient use of CUDA. See details in the Hugging Face blog post.

When pyTorch is installed, run the following in the root directory to install the remaining dependencies:

pip install -e .

This will install the following dependencies:

Then, run the download script to downloads the pretrained torchMoji weights (~85MB) from here and put them in the model/ directory:

python scripts/download_weights.py

Testing

To run the tests, install nose. After installing, navigate to the tests/ directory and run:

cd tests
nosetests -v

By default, this will also run finetuning tests. These tests train the model for one epoch and then check the resulting accuracy, which may take several minutes to finish. If you'd prefer to exclude those, run the following instead:

cd tests
nosetests -v -a '!slow'

Disclaimer

This code has been tested to work with Python 2.7 and 3.5 on Ubuntu 16.04 and macOS Sierra machines. It has not been optimized for efficiency, but should be fast enough for most purposes. We do not give any guarantees that there are no bugs - use the code on your own responsibility!

Contributions

We welcome pull requests if you feel like something could be improved. You can also greatly help us by telling us how you felt when writing your most recent tweets. Just click here to contribute.

License

This code and the pretrained model is licensed under the MIT license.

Benchmark datasets

The benchmark datasets are uploaded to this repository for convenience purposes only. They were not released by us and we do not claim any rights on them. Use the datasets at your responsibility and make sure you fulfill the licenses that they were released with. If you use any of the benchmark datasets please consider citing the original authors.

Citation

@inproceedings{felbo2017,
  title={Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm},
  author={Felbo, Bjarke and Mislove, Alan and S{\o}gaard, Anders and Rahwan, Iyad and Lehmann, Sune},
  booktitle={Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2017}
}
Owner
Hugging Face
The AI community building the future.
Hugging Face
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022