Spherical CNNs

Related tags

Deep Learnings2cnn
Overview

Spherical CNNs

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariance

Overview

This library contains a PyTorch implementation of the rotation equivariant CNNs for spherical signals (e.g. omnidirectional images, signals on the globe) as presented in [1]. Equivariant networks for the plane are available here.

Dependencies

(commands to install all the dependencies on a new conda environment)

conda create --name cuda9 python=3.6 
conda activate cuda9

# s2cnn deps
#conda install pytorch torchvision cuda90 -c pytorch # get correct command line at http://pytorch.org/
conda install -c anaconda cupy  
pip install pynvrtc joblib

# lie_learn deps
conda install -c anaconda cython  
conda install -c anaconda requests  

# shrec17 example dep
conda install -c anaconda scipy  
conda install -c conda-forge rtree shapely  
conda install -c conda-forge pyembree  
pip install "trimesh[easy]"  

Installation

To install, run

$ python setup.py install

Usage

Please have a look at the examples.

Please cite [1] in your work when using this library in your experiments.

Design choices for Spherical CNN Architectures

Spherical CNNs come with different choices of grids and grid hyperparameters which are on the first look not obviously related to those of conventional CNNs. The s2_near_identity_grid and so3_near_identity_grid are the preferred choices since they correspond to spatially localized kernels, defined at the north pole and rotated over the sphere via the action of SO(3). In contrast, s2_equatorial_grid and so3_equatorial_grid define line-like (or ring-like) kernels around the equator.

To clarify the possible parameter choices for s2_near_identity_grid:

max_beta:

Adapts the size of the kernel as angle measured from the north pole. Conventional CNNs on flat space usually use a fixed kernel size but pool the signal spatially. This spatial pooling gives the kernels in later layers an effectively increased field of view. One can emulate a pooling by a factor of 2 in spherical CNNs by decreasing the signal bandwidth by 2 and increasing max_beta by 2.

n_beta:

Number of rings of the kernel around the equator, equally spaced in [β=0, β=max_beta]. The choice n_beta=1 corresponds to a small 3x3 kernel in conv2d since in both cases the resulting kernel consists of one central pixel and one ring around the center.

n_alpha:

Gives the number of learned parameters of the rings around the pole. These values are per default equally spaced on the azimuth. A sensible number of values depends on the bandwidth and max_beta since a higher resolution or spatial extent allow to sample more fine kernels without producing aliased results. In practice this value is typically set to a constant, low value like 6 or 8. A reduced bandwidth of the signal is thereby counteracted by an increased max_beta to emulate spatial pooling.

The so3_near_identity_grid has two additional parameters max_gamma and n_gamma. SO(3) can be seen as a (principal) fiber bundle SO(3)→S² with the sphere S² as base space and fiber SO(2) attached to each point. The additional parameters control the grid on the fiber in the following way:

max_gamma:

The kernel spans over the fiber SO(2) between γ∈[0, max_gamma]. The fiber SO(2) encodes the kernel responses for every sampled orientation at a given position on the sphere. Setting max_gamma≨2π results in the kernel not seeing the responses of all kernel orientations simultaneously and is in general unfavored. Steerable CNNs [3] usually always use max_gamma=2π.

n_gamma:

Number of learned parameters on the fiber. Typically set equal to n_alpha, i.e. to a low value like 6 or 8.

See the deep model of the MNIST example for an example of how to adapt these parameters over layers.

Feedback

For questions and comments, feel free to contact us: geiger.mario (gmail), taco.cohen (gmail), jonas (argmin.xyz).

License

MIT

References

[1] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Spherical CNNs. International Conference on Learning Representations (ICLR), 2018.

[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Convolutional Networks for Spherical Signals. ICML Workshop on Principled Approaches to Deep Learning, 2017.

[3] Taco S. Cohen, Mario Geiger, Maurice Weiler, Intertwiners between Induced Representations (with applications to the theory of equivariant neural networks), ArXiv preprint 1803.10743, 2018.

Owner
Jonas Köhler
Jonas Köhler
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023