This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

Related tags

Deep Learningsilg
Overview

SILG

This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please consider citing this work:

@inproceedings{ zhong2021silg,
  title={ {SILG}: The Multi-environment Symbolic InteractiveLanguage Grounding Benchmark },
  author={ Victor Zhong and Austin W. Hanjie and Karthik Narasimhan and Luke Zettlemoyer },
  booktitle={ NeurIPS },
  year={ 2021 }
}

Please also consider citing the individual tasks included in SILG. They are RTFM, Messenger, NetHack Learning Environment, AlfWorld, and Touchdown.

RTFM

RTFM

Messenger

Messenger

SILGNethack

SILGNethack

ALFWorld

ALFWorld

SILGSymTouchdown

SILGSymTouchdown

How to install

You have to install the individual environments in order for SILG to work. The GitHub repository for each environment are found at

Our dockerfile also provides an example of how to install the environments in Ubuntu. You can also try using our install_envs.sh, which has only been tested in Ubuntu and MacOS.

bash install_envs.sh

Once you have installed the individual environments, install SILG as follows

pip install -r requirements.txt
pip install -e .

Some environments have (potentially a large quantity of) data files. Please download these via

bash download_env_data.sh  # if you do not want to use VisTouchdown, feel free to comment out its very large feature file

As a part of this download, we will symlink a ./cache directory from ./mycache. SILG environments will pull data files from this directory. If you are on NFS, you might want to move mycache to local disk and then relink the cache directory to avoid hitting NFS.

Docker

We provide a Docker container for this project. You can build the Docker image via docker build -t vzhong/silg . -f docker/Dockerfile. Alternatively you can pull my build from docker pull vzhong/silg. This contains the environments as well as SILG, but doesn't contain the large data download. You will still have to download the environment data and then mount the cache folder to the container. You may need to specify --platform linux/amd64 to Docker if you are running a M1 Mac.

Because some of the environments require that you install them first before downloading their data files, you want to download using the Docker container as well. You can do

docker run --rm --user "$(id -u):$(id -g)" -v $PWD/download_env_data.sh:/opt/silg/download_env_data.sh -v $PWD/mycache:/opt/silg/cache vzhong/silg bash download_env_data.sh

Once you have downloaded the environment data, you can use the container by doing something like

docker run --rm --user "$(id -u):$(id -g)" -it -v $PWD/mycache:/opt/silg/cache vzhong/silg /bin/bash

Visualizing environments

We provide a script to play SILG environments in the terminal. You can access it via

silg_play --env silg:rtfm_train_s1-v0  # use -h to see options

# docker variant
docker run --rm -it -v $PWD/mycache:/opt/silg/cache vzhong/silg silg_play --env silg:rtfm_train_s1-v0

These recordings are shown at the start of this document and are created using asciinema.

How to run experiments

The entrypoint to experiments is run_exp.py. We provide a slurm script to run experiments in launch.py. These scripts can also run jobs locally (e.g. without slurm). For example, to run RTFM:

python launch.py --local --envs rtfm

You can also log to WanDB with the --wandb option. For more, use the -h flag.

How to add a new environment

First, create a wrapper class in silg/envs/ .py . This wrapper will wrap the real environment and provide APIs used by the baseline models and the training script. silg/envs/rtfm.py contains an example of how to do this for RTFM. Once you have made the wrapper, don't forget to include its file in silg/envs/__init__.py.

The wrapper class must subclass silg.envs.base.SILGEnv and implement:

# return the list of text fields in the observation space
def get_text_fields(self):
    ...

# return max number of actions
def get_max_actions(self):
    ...

# return observation space
def get_observation_space(self):
    ...

# resets the environment
def my_reset(self):
    ...

# take a step in the environment
def my_step(self, action):
    ...

Additionally, you may want to implemnt rendering functions such as render_grid, parse_user_action, and get_user_actions so that it can be played with silg_play.

Note There is an implementation detail right now in that the Torchbeast code considers a "win" to be equivalent to the environment returning a reward >0.8. We hope to change this in the future (likely by adding another tensor field denoting win state) but please keep this in mind when implementing your environment. You likely want to keep the reward between -1 and +1, which high rewards >0.8 reserved for winning if you would like to use the training code as-is.

Changelog

Version 1.0

Initial release.

Owner
Victor Zhong
I am a PhD student at the University of Washington. Formerly Salesforce Research / MetaMind, @stanfordnlp, and ECE at UToronto.
Victor Zhong
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022