Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Overview

Sparsity Probe: Analysis tool for Deep Learning Models

GitHub license made-with-python made-with-pytorch

This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning Models by I. Ben-Shaul and S. Dekel (2021).

Folded Ball Example

Downloading the Repo

git clone https://github.com/idobenshaul10/SparsityProbe.git
pip install -r requirements.txt

Requirements

torch==1.7.0
umap_learn==0.4.6
matplotlib==3.3.2
tqdm==4.49.0
seaborn==0.11.0
torchvision==0.8.1
numpy==1.19.2
scikit_learn==0.24.2
umap==0.1.1

Usage

The first step of using this Repo should be to look at this example: CIFAR10 Example. In this example, we demonstrate running the Sparsity-Probe on a trained Resnet18 on the CIFAR10 dataset, at selected layers.

Creating a new enviorment:

Create a new environment in the environments directory, inheriting from BaseEnviorment. This enviorment should include the train and test datasets(including the matching transforms), the model layers we want to test the alpha-scores on(see cifar10_env example), and the trained model.

Training a model:

It is possible to train a basic model with the train.py script, which uses an environment to load the model and the datasets. Example Usage: python train/train_mnist.py --output_path "results" --batch_size 32 --epochs 100

Running the Sparsity Probe

Done using the DL_smoothness.py script. Arguments:
trees - Number of trees in the forest.
depth - Maximum depth of each tree.
batch_size - batch used in the forward pass(when computing the layer outputs)
env_name - enviorment which is loaded to measure alpha-scores on
epsilon_1 - the epsilon_low used for the numerical approximation. By default, epsilon_high is inited as 4*epsilon_low
only_umap - only create umaps of the intermediate layers(without computing alpha-scores)
use_clustering - run KMeans on intermediate layers
calc_test - calculate test accuracy(More metrics coming soon)
output_folder - location where all outputs are saved
feature_dimension - to reduce computation costs, we compute the alpha-scores on the features after a dimensionality reduction technique has been applied. As of now, if the dim(layer_outputs)>feature_dimension, the TruncatedSVD is used to reduce dim(layer_outputs) to feature_dimension. Default feature_dimension is 2500.

Plotting Results

Result plots can be created using this script.

UMAP example

Acknowledgements

Our pretrained CIFAR10 Resnet18 network used in the example is taken from This Repo.

License

This repository is MIT licensed, as found in the LICENSE file.

Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022