Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Overview

Sparsity Probe: Analysis tool for Deep Learning Models

GitHub license made-with-python made-with-pytorch

This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning Models by I. Ben-Shaul and S. Dekel (2021).

Folded Ball Example

Downloading the Repo

git clone https://github.com/idobenshaul10/SparsityProbe.git
pip install -r requirements.txt

Requirements

torch==1.7.0
umap_learn==0.4.6
matplotlib==3.3.2
tqdm==4.49.0
seaborn==0.11.0
torchvision==0.8.1
numpy==1.19.2
scikit_learn==0.24.2
umap==0.1.1

Usage

The first step of using this Repo should be to look at this example: CIFAR10 Example. In this example, we demonstrate running the Sparsity-Probe on a trained Resnet18 on the CIFAR10 dataset, at selected layers.

Creating a new enviorment:

Create a new environment in the environments directory, inheriting from BaseEnviorment. This enviorment should include the train and test datasets(including the matching transforms), the model layers we want to test the alpha-scores on(see cifar10_env example), and the trained model.

Training a model:

It is possible to train a basic model with the train.py script, which uses an environment to load the model and the datasets. Example Usage: python train/train_mnist.py --output_path "results" --batch_size 32 --epochs 100

Running the Sparsity Probe

Done using the DL_smoothness.py script. Arguments:
trees - Number of trees in the forest.
depth - Maximum depth of each tree.
batch_size - batch used in the forward pass(when computing the layer outputs)
env_name - enviorment which is loaded to measure alpha-scores on
epsilon_1 - the epsilon_low used for the numerical approximation. By default, epsilon_high is inited as 4*epsilon_low
only_umap - only create umaps of the intermediate layers(without computing alpha-scores)
use_clustering - run KMeans on intermediate layers
calc_test - calculate test accuracy(More metrics coming soon)
output_folder - location where all outputs are saved
feature_dimension - to reduce computation costs, we compute the alpha-scores on the features after a dimensionality reduction technique has been applied. As of now, if the dim(layer_outputs)>feature_dimension, the TruncatedSVD is used to reduce dim(layer_outputs) to feature_dimension. Default feature_dimension is 2500.

Plotting Results

Result plots can be created using this script.

UMAP example

Acknowledgements

Our pretrained CIFAR10 Resnet18 network used in the example is taken from This Repo.

License

This repository is MIT licensed, as found in the LICENSE file.

Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022