Python parser for DTED data.

Related tags

Deep Learningdted
Overview

DTED Parser

This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This package is tested to work on Shuttle Radar Topography Mission (SRTM) DTED files (as far as I can tell these are the only publicly available DTED files). This can be used as a library to parse these files into numpy arrays and additionally exposes a CLI that can be used to investigate individual DTED files.

For more information and resources about the DTED file format see the end of the README.

How to install

You can install this as a normal python package using pip

pip install dted

How to use

The following example code will parse DTED file checked into this repository for testing.

As a library

Parsing a DTED file into a numpy array is as simple as:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
assert isinstance(tile.data, np.ndarray)

Additionally you can access the metadata of the DTED file (the User Header Label, Data Set Identification, and Accuracy Description records) easily.

from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
print(tile.dsi.south_west_corner)

Parsing entire DTED files has been heavily optimized, but does still take a little bit of time. On my machine (2014 MacbookPro) parsing the 25MB example file take about 120 ms. However, if you only need to look up specific terrain elevations within a DTED file you do not need to parse the entire file. Doing the following takes <1ms on my machine:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
print(tile.get_elevation(LatLon(latitude=41.5, longitude=-70.5)))

If for some reason you really need to eek out every bit of performance and you thoroughly trust your DTED data, you speed up the data parsing by skipping the checksum verification. Doing the following takes about 75 ms on my machine:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
tile.load_data(perform_checksum=False)

assert isinstance(tile.data, np.ndarray)

The final functionality the dted.Tile class offers is to easily check if a coordinate location is contained within the DTED file. This also does not require that the DTED data is fully loaded into memory:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)

assert LatLon(latitude=41.5, longitude=-70.25) in tile

As a CLI

Installing this package into an activated virtual environment also exposes the dted terminal command. This provides three pieces of functionality:

  1. See report of the metadata of the DTED file.
  2. Lookup terrain elevation at a specific point within the DTED file.
  3. Display and ASCII representation of the DTED file in your terminal.

To get a report of the file metadata:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 
File Path:          test/data/n41_w071_1arc_v3.dt2 (24 MB)
Product Level:      DTED2
Security Code:      U
Compilation Date:   02/2000
Maintenance Date:   
Datums (V/H):       E96/WGS84

    (42.0N,71.0W)      (42.0N,70.0W)
          NW --------------- NE     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          SW --------------- SE     
    (41.0N,71.0W)      (41.0N,70.0W)

Origin:                 (41.0N,71.0W)
Resolution (lat/lon):   1.0"/1.0"
Accuracy (V/H):         6m/13m

To lookup terrain elevation at a specific point:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 --location 41.7 -70.4
51.0 meters

To display the DTED file in your terminal:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 --display

This will attempt to create an ASCII representation of the DTED file within your terminal at the best resolution possible. Increasing the size of your terminal window or zooming out your terminal window will increase the resolution of the chart:

Normal Resolution Image

High Resolution Image

Why did I add this feature? Why not?

If you want to plot this data like a sane person, you can use the following example code with the matplotlib package (not included)

import matplotlib.pyplot as plt
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
plt.imshow(tile.data.T[::-1], cmap="hot")

The DTED file format

This parser was created using the specification provided here:

https://www.dlr.de/eoc/Portaldata/60/Resources/dokumente/7_sat_miss/SRTM-XSAR-DEM-DTED-1.1.pdf

Some things to be aware of with the DTED file format:

  1. Some DTED files contain "void" values for data points where elevation data is not known (such as over bodies of water). An example of such a file can be found at test/data/n00_e006_3arc_v2.dt1. This package will emit a warning if void data is found, and the definition of the void value can be found in dted.definitions.VOID_DATA_VALUE.
  2. The DTED data is structured along longitudinal lines. Therefore, when accessing the data within the numpy array the rows correspond to longitude and the columns correspond to latitude. This may seem backwards to your intuition, i.e. you would access the elevation at a coordinate point with tile.data[longitude_index, latitude_index].
  3. Elevation within the DTED file is encoded using "signed magnitude" notation. This has no effect on a user of this package interacting with the parsed terrain elevation data, but it does slow down the parsing of this data as I do not know of an optimized method of parsing signed magnitude data in python. If someone knows how to do this this parsing library could become even faster.

Where to find DTED data

Publicly available DTED data is relatively hard to find and access, but it can be done. The DTED files I used for testing and developing this package come from https://earthexplorer.usgs.gov/.

This EarthExplorer app provided by the USGS provides an interface to download many types of terrain data, including the SRTM DTED data. However, you need to make an account with them in order to perform and I'm unsure of a way to use their machine-to-machine API to automate downloading data.

Contributing

Contributions are absolutely encouraged! To develop on this project you need to install the poetry package manager.

Clone the repo:

[email protected]$ git clone https://github.com/bbonenfant/dted

Create and activate the virtual environment:

[email protected]$ poetry install && source .venv/bin/activate

To run the tests:

(.venv) [email protected]$ pytest .

If you are getting BLACK errors from pytest, run the black code formatter:

(.venv) [email protected]$ black .
Comments
  • Areas above 50° or below -50° Latitude

    Areas above 50° or below -50° Latitude

    Hello,

    I am trying to use the Tile(dted_file) on SRTM 1arc DTED files. The publicly available SRTM 1arc data is actually not 1arc by 1arc but 2arc by 1arc, as soon as you are working with areas above 50° Latitude.

    This causes the Tile() method to fail with the error: dted.errors.InvalidFileError: Checksum failed for data block

    When I try to ignore the checksum with load_data(perform_checksum=False), it fails with the error: dted.errors.InvalidFileError: All data blocks within a DTED file must begin with 170. Found: 1

    Do I just have to do something differently or is this something you could fix? It works great otherwise!

    Thank you for the help.

    opened by StefanBregenzer 10
  • Error in calculating latitude and longitude indices

    Error in calculating latitude and longitude indices

    I receive drastically different elevation values for the same location when using DTED levels 0, 1, and 2. An area that I know to be approximately 735m MSL reports the following:

    ~/Desktop/dted/w117$ dted n34.dt0 --location 34.353932 -116.295523
    1035.0 meters
    ~/Desktop/dted/w117$ dted n34.dt1 --location 34.353932 -116.295523
    2557.0 meters
    ~/Desktop/dted/w117$ dted n34.dt2 --location 34.353932 -116.295523
    733.0 meters
    

    In looking at the source code, I believe the calculations for the latitude and longitude indices in the DTED data are wrong:

    I believe this:

            lat_interval, lon_interval = self.dsi.latitude_interval, self.dsi.longitude_interval
            latitude_index = round(
                (latlon.latitude - origin_latitude) * (latitude_count - 1) / lat_interval
            )
            longitude_index = round(
                (latlon.longitude - origin_longitude) * (longitude_count - 1) / lon_interval
            )
    

    Should be this:

            latitude_index = round(
                (latlon.latitude - origin_latitude) * (latitude_count - 1) 
            )
            longitude_index = round(
                (latlon.longitude - origin_longitude) * (longitude_count - 1)
            )
    
    opened by rickpresley 2
  • Adding in the Tiles class.

    Adding in the Tiles class.

    New Tiles class added.

    • allows user to pass in directory of dted files, and query that list for elevations
    • functionality works regardless of filenames
    • functionality works recursively in directory
    • works even with a mix of dted 1 and dted 2 files
    • added a description of how to use in the README
    opened by westonCoder 0
  • Import Error

    Import Error

    I am getting an error when importing Tile from dted. I am using a fresh Conda environment but cannot seem to get around this error. I can see the Tile class in dted/dted/tile.py but the import does not work. Error shown below:

    ImportError: cannot import name 'Tile' from partially initialized module 'dted' (most likely due to a circular import) (/<PATH TO FILE>/dted.py)
    
    Python Version: Python 3.9.12
    

    Thanks for your help in advance!

    opened by OliverHeilmann 4
  • Query a DTED Directory instead of a specific File

    Query a DTED Directory instead of a specific File

    It'd be very useful to have a directory full of dted files, and be able to query the pool of tiles instead of checking each individual one. It could get fancy with loading tiles as needed, tracking frequency of use to free up older ones, etc.

    enhancement 
    opened by KPB3rd 2
Releases(v1.0.3)
Owner
Ben Bonenfant
Ben Bonenfant
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023