Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

Overview

On the Generative Utility of Cyclic Conditionals

This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals" (NeurIPS 2021).

Chang Liu <[email protected]>, Haoyue Tang, Tao Qin, Jintao Wang, Tie-Yan Liu.
[Paper & Appendix] [Slides] [Video] [Poster]

Introduction

graphical summary

Whether and how can two conditional models p(x|z) and q(z|x) that form a cycle uniquely determine a joint distribution p(x,z)? We develop a general theory for this question, including criteria for the two conditionals to correspond to a common joint (compatibility) and for such joint to be unique (determinacy). As in generative models we need a generator (decoder/likelihood model) and also an encoder (inference model) for representation, the theory indicates they could already define a generative model p(x,z) without specifying a prior distribution p(z)! We call this novel generative modeling framework as CyGen, and develop methods to achieve the eligibility (compatibility and determinacy) and the usage (fitting and generating data) as a generative model.

This codebase implements these CyGen methods, and various baseline methods. The model architectures are based on the Sylvester flow (Householder version), and the experiment environments/setups follow FFJORD. Authorship is clarified in each file.

Requirements

The code requires python version >= 3.6, and is based on PyTorch. To install requirements:

pip install -r requirements.txt

Usage

Run the run_toy.sh and run_image.sh scripts for the synthetic and real-world (i.e. MNIST and SVHN) experiments. See the commands in the script files or python3 main_[toy|image].py --help for customized usage or hyperparameter tuning.

For the real-world experiments, downstream classification accuracy is evaluated along training. To evaluate the FID score, run the command python3 compute_gen_fid.py --load_dict=<path_to_model.pth>.

Results

CyGen synthetic results

As a trailer, we show the synthetic results here. We see that CyGen achieves both high-quality data generation, and well-separated latent clusters (useful representation). This is due to the removal of a specified prior distribution so that the manifold mismatch and posterior collapse problems are avoided. DAE (denoising auto-encoder) does not need a prior, but its training method hurts determinacy. If pretrained as a VAE (i.e. CyGen(PT)), we see that the knowledge of a centered and centrosymmetric prior is encoded through the conditional models. See the paper for more results.

Owner
Chang Liu
Senior Researcher @ MSR Asia. Ph.D. from Tsinghua University. Statistical Machine Learning, Bayesian Inference, Generative Models
Chang Liu
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022