Real-time analysis of intracranial neurophysiology recordings.

Overview

py_neuromodulation

Click this button to run the "Tutorial ML with py_neuro" notebooks:

The py_neuromodulation toolbox allows for real time capable processing of multimodal electrophysiological data. The primary use is movement prediction for adaptive deep brain stimulation.

Find the documentation here https://neuromodulation.github.io/py_neuromodulation/ for example usage and parametrization.

Setup

For running this toolbox first create a new virtual conda environment:

conda env create --file=env.yml --user

The main modules include running real time enabled feature preprocessing based on iEEG BIDS data.

Different features can be enabled/disabled and parametrized in the `https://github.com/neuromodulation/py_neuromodulation/blob/main/pyneuromodulation/nm_settings.json>`_.

The current implementation mainly focuses band power and sharpwave feature estimation.

An example folder with a mock subject and derivate feature set was estimated.

To run feature estimation given the example BIDS data run in root directory.

python main.py

This will write a feature_arr.csv file in the 'examples/data/derivatives' folder.

For further documentation view ParametrizationDefinition for description of necessary parametrization files. FeatureEstimationDemo walks through an example feature estimation and explains sharpwave estimation.

Comments
  • Adopt the usage of an argument parser (argparse)

    Adopt the usage of an argument parser (argparse)

    argparse is a python package that allows for in command line options, arguments and sub-commands

    documentation: https://docs.python.org/3/library/argparse.html

    enhancement 
    opened by mousa-saeed 7
  • Conda environment + setup

    Conda environment + setup

    @timonmerk I tried to install pyneuromodulation as package, but it wasn't so easy to make it work. I did the following:

    • I modified env.yml (previously settting up the environment didn't work - and additionally env.yml was configured to install all packages via pip, now they are (except pybids) installed via conda.
    • I installed the conda environment via

    conda env create -f env.yml

    • I activated the conda environment via

    conda activate pyneuromodulation_test

    • I installed pyneuromodulation in editable mode

    pip install -r requirements.txt --editable .

    • In python, I ran

    import py_neuromodulation print(dir(py_neuromodulation))

    • Which told me that the only items in this package are

    ['builtins', 'cached', 'doc', 'file', 'loader', 'name', 'package', 'path', 'spec'] <

    • Only once I had added the line: "from . import nm_BidsStream" to init.py, did I get the following output for dir():

    ['builtins', 'cached', 'doc', 'file', 'loader', 'name', 'package', 'path', 'spec', 'nm_BidsStream', 'nm_IO', 'nm_bandpower', 'nm_coherence', 'nm_define_nmchannels', 'nm_eval_timing', 'nm_features', 'nm_fft', 'nm_filter', 'nm_generator', 'nm_hjorth_raw', 'nm_kalmanfilter', 'nm_normalization', 'nm_notch_filter', 'nm_plots', 'nm_projection', 'nm_rereference', 'nm_resample', 'nm_run_analysis', 'nm_sharpwaves', 'nm_stft', 'nm_stream', 'nm_test_settings']

    Questions:

    • Was this the intended way of setting up the environment and the package?
    • What could the problem with init.py be related to?
    opened by richardkoehler 4
  • Add Coherence and temporarily remove PDC and DTC

    Add Coherence and temporarily remove PDC and DTC

    @timonmerk We should maybe think about removing PDC and DTC from main again (and moving them to a branch) until we make sure that they are implemented correctly. Instead we could think about adding simple coherence, which might be less specific but easier to implement and less computationally expensive.

    enhancement 
    opened by richardkoehler 4
  • Specifying segment_lengths for frequency_ranges explicitly

    Specifying segment_lengths for frequency_ranges explicitly

    @timonmerk

    Currently the specification of segment_lengths is not very intuitive and also done implicitly, e.g. 10 == 1/10 of the given segment. Maybe we could write the segment_lenghts explicitly in milliseconds, so that they are independent such parameters as length of the data batch that is passed. So whether the data batch is 4096, 8000 or 700, the segment_length would always remain the same (e.g. 100 ms). Instead of this: "frequency_ranges": [[4, 8], [8, 12], [13, 20], [20, 35], [13, 35], [60, 80], [90, 200], [60, 200], [200, 300] ], "segment_lengths": [1, 2, 2, 3, 3, 3, 10, 10, 10, 10],

    I would imagine something like this: "frequency_ranges": [[4, 8], [8, 12], [13, 20], [20, 35], [13, 35], [60, 80], [90, 200], [60, 200], [200, 300] ], "segment_lengths": [1000, 500, 333, 333, 333, 100, 100, 100, 100],

    or even better in my opinion (because it is less prone to errors, the user is enforced to write the segment length write after the frequency range). Just to underline this argument, I noticed that there were too many segment_lengths in the settings.json file. There were 10 segment_lengths but only 9 frequency_ranges. So my suggestion: "frequency_ranges": [[[4, 8], 1000], [[8, 12], 500], [[13, 20], 333], [[20, 35], 333], [[13, 35], 333], [[60, 80], 100], [[90, 200], 100], [[60, 200], 100], [[200, 300] 100] ],

    opened by richardkoehler 4
  • Add cortical-subcortical feature estimation

    Add cortical-subcortical feature estimation

    Given two channels, calculate:

    • partial directed coherence
    • phase amplitude coupling

    Add as separate "feature" file. Needs to implement write to output dataframe

    opened by timonmerk 4
  • Optimize speed of feature normalization

    Optimize speed of feature normalization

    • Computation time of feature normalization was improved
    • Memory usage of feature normalization was improved
    • nm_eval_timing was repaired, as these changes broke the api

    closes #136

    opened by richardkoehler 3
  • Rework

    Rework "nm_settings.json"

    There are some minor issues in the nm_settings.json that we could improve:

    1. Add settings for STFT. Right now STFT requires the sampling frequency to be 1000 Hz
    2. Re-think frequency bands: Either we define them separate from FFT, STFT or bandpass, and then they can't be specifically adapted to each method. Or you can define them inside of each method (FFT, STFT, bandpass separately). But right now, FFT and STFT are "taking" the info from the bandpass settings. Also, right now the fband_names are hard-coded in nm_features.py (not sure why this is the case?)
    3. Make notch filter settings more flexible (i.e. let the user define how many harmonics he would like to remove).
    enhancement 
    opened by richardkoehler 3
  • Add possibility to

    Add possibility to "create" new channels

    Add the option in "settings.json" to "create" new channels by summation (e.g. new_channel: LFP_R_234, sum_channels: [LFP_R_2, LFP_R_3, LFP_R_4]. Not an imminent priority, but would be nice to have.

    opened by richardkoehler 3
  • Add column

    Add column "status" to M1.tsv

    @timonmerk I suggest that we add the column "status" (like in BIDS channels.tsv files) to the M1.tsv file values would be "good" or "bad" I recently encountered the problem that I wanted to exclude an ECOG channel from the ECOG average reference because it was too noisy, but there is no way to do this, except to hard-code. Alternatively, we could in theory also implement excluding channels by setting the type of the bad channel to "bad". This is not 100% logical but this would avoid for us to change the current API. However, the more sustainable and "BIDS-friendly" solution would be to implement the "status" column. I could easily imagine such a scenario:

    • We want to make real-time predictions from an ECOG grid (e.g. 6 * 5 electrodes), but to reduce computational cost we only want to select the best performing ECOG channel. However, we would like to re-reference this ECOG channel to an average ECOG reference. So the solution would be to mark all ECOG channels as type "ecog", mark the bad ECOG channels as "bad", the others as "good", and only set "used" to 1 for the best performing ECOG channel.
    opened by richardkoehler 3
  • Check in settings.py sampling frequency filter relation

    Check in settings.py sampling frequency filter relation

    For too low sampling frequencies, the current notch filter will fail. Design filter in settings.py?

    Settings.py should be written as class s.t. settings.json, df_M1 and such code isn't part of start_BIDS / start_LSL anymore.

        fs = int(np.ceil(raw_arr.info["sfreq"]))
        line_noise = int(raw_arr.info["line_freq"])
    
        # read df_M1 / create M1 if None specified
        df_M1 = pd.read_csv(PATH_M1, sep="\t") \
            if PATH_M1 is not None and os.path.isfile(PATH_M1) \
            else define_M1.set_M1(raw_arr.ch_names, raw_arr.get_channel_types())
        ch_names = list(df_M1['name'])
        refs = df_M1['rereference']
        to_ref_idx = np.array(df_M1[(df_M1['used'] == 1)].index)
        cortex_idx = np.where(df_M1.type == 'ecog')[0]
        subcortex_idx = np.array(df_M1[(df_M1["type"] == 'seeg') | (df_M1['type'] == 'dbs')
                                       | (df_M1['type'] == 'lfp')].index)
        ref_here = rereference.RT_rereference(ch_names, refs, to_ref_idx,
                                              cortex_idx, subcortex_idx,
                                              split_data=False)
    
    opened by timonmerk 3
  • Update rereference and test_features

    Update rereference and test_features

    @timonmerk So I was pulling all the information extraction from df_M1, like cortex_idx and subcortex_idx etc., into the rereference module, to make the actual analysis script (e.g. test_features) a bit cleaner. This got me thinking that we should maybe initialize the settings as a class, into which we load the settings.json and M1.tsv. We could then get the relevant information via functions e.g. ch_names(), used_chs(), cortex_idx(), out_path() etc. What do you think? The pull request doesn't implement the class yet or anything, I only pulled the cortex_idx etc. into the rereference initialization.

    opened by richardkoehler 3
  • Restructure nm_run_analysis.py

    Restructure nm_run_analysis.py

    This PR is aimed at restructuring run_analysis.py so that the data processing can now be performed independently of a py_neuromodulation data stream. This means in detail that:

    • I renamed the class Run to DataProcessor to make it clearer what it does: it processes a single batch of data. This is only my personal preference, so feel free to revert this change or give it any other name.
    • It is now DataProcessor and not the Stream that instantiates the Preprocessor and the Features classes from the given settings. This way DataProcessor can be used independently of Stream (e.g. in the case of timeflux, where timeflux handles the stream, hence the name of this branch).
    • I noticed a major bug in nm_run_analysis.py, where the settings specified "raw_resampling", but nm_run_analysis checked for "raw_resample" and this went unnoticed, because the matching statement didn't check for invalid specifications. This means that in example_BIDS.py "raw_resampling" was activated, but the data was not actually resampled. It took me a couple of hours to find this bug. I fixed the bug and also added handling the case of invalid strings, but the decoding performance has now slightly changed. Note that in this example case if one deactivates "raw_resampling", one might potentially observe improved performance.
    • After this restructuring, it is no longer necessary to specify the "preprocessing_order" and preprocessing methods to True or False respectively. The keyword "preprocessing" now takes a list (which is equivalent to the preprocessing_order before) and infers from this list which preprocessing methods to use. If you want to deactivate a preprocessing method, simply take it out of the "preprocessing" list. This change I would consider optional, but it does make the code much easier to read and helps us to avoid errors in the settings specifications.
    • I removed the use of the test_settings function, and I think that we should deprecate this function. It was a nice idea originally, but I am now more of the opinion that each method or class (e.g. NotchFilter) must do the work of checking if the passed arguments are valid anyway. So having an additional test_settings functions would mean duplication of this check, and it means that each time we change a function, we have to change test_settings too - so this means duplication of work for ourselves, too.
    • Fixed typos, like LineLenth, and added and fixed some type hints.
    • I might have forgotten about some additional changes I made ...

    Let me know what you think!

    opened by richardkoehler 0
Releases(v0.02)
Owner
Interventional Cognitive Neuromodulation - Neumann Lab Berlin
Interventional and Cognitive Neuromodulation Group
Interventional Cognitive Neuromodulation - Neumann Lab Berlin
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022