iBOT: Image BERT Pre-Training with Online Tokenizer

Related tags

Deep Learningibot
Overview

Image BERT Pre-Training with iBOT iBOT Icon

PWC PWC

Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

[arXiv] [BibTex]

iBOT framework

iBOT is a novel self-supervised pre-training framework that performs masked image modeling with self-distillation. iBOT pre-trained model shows local semantic features, which helps the model transfer well to downstream tasks both at a global scale and a local scale. For example, iBOT achieves strong performance on COCO object detection (51.4 box AP and 44.2 mask AP) and ADE20K semantic segmentation (50.0 mIoU) with vanilla ViT-B/16. iBOT can also extract semantic-meaningful local parts, like dog's ear 🐶 .

Update 🎉

  • December 2021 - Release the code and pre-trained models.
  • November 2021 - Release the pre-print on arXiv.

Installation

See installation structions for details.

Training

For a glimpse at the full documentation of iBOT pre-training, please run:

python main_ibot.py --help

iBOT Pre-Training with ViTs

To start the iBOT pre-training with Vision Transformer (ViT), simply run the following commands. JOB_NAME is a customized argument to distinguish different experiments and this will automatically save checkpoints into the seperate folders.

./run.sh imagenet_pretrain $JOB_NAME vit_{small,base,large} teacher {16,24,64}

The exact arguments to reproduce the models presented in our paper can be found in the args column of the pre-trained models. We also provide the logs for pre-training to help reproducibility.

For example, run iBOT with ViT-S/16 network on two nodes with 8 GPUs for 800 epochs with the following command. The resulting checkpoint should reach 75.2% on k-NN accuracy, 77.9% on linear probing accuracy, and 82.3% on fine-tuning accuracy.

./run.sh imagenet_pretrain $JOB_NAME vit_small teacher 16 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 800 \
  --batch_size_per_gpu 64 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2

iBOT Pre-Training with Swins

This code also works for training iBOT on Swin Transformer (Swin). In the paper, we only conduct experiments on Swin-T with different window size:

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher {16,40} \
  --patch_size 4 \
  --window_size {7,14}

For example, run iBOT with Swin-T/14 network on five nodes with 8 GPUS for 300 epochs with the following command. The resulting checkpoint should reach 76.2% on k-NN accuracy, 79.3% on linear probing accuracy.

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher 40 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 300 \
  --batch_size_per_gpu 26 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2 \
  --pred_start_epoch 50 \
  --patch_size 4 \
  --window_size 14 

Pre-Trained Models

You can choose to download only the weights of the pretrained backbone used for downstream tasks, and the full ckpt which contains backbone and projection head weights for both student and teacher networks. For the backbone, s denotes that the student network is selected while t denotes that the teacher network is selected.

Arch. Par. k-NN Lin. Fin. download
ViT-S/16 21M 74.5% 77.0% 82.3% backbone (t) full ckpt args logs
Swin-T/7 28M 75.3% 78.6% \ backbone (t) full ckpt args logs
Swin-T/14 28M 76.2% 79.3% \ backbone (t) full ckpt args logs
ViT-B/16 85M 77.1% 79.5% 83.8% backbone (t) full ckpt args logs

We also provide the ViT-{B,L}/16 model pre-trained on ImageNet-22K dataset.

Arch. Par. k-NN Lin. Fin. download
ViT-B/16 85M 71.1% 79.0% 84.4% backbone (s) full ckpt args logs
ViT-L/16 307M 70.6% 81.7% 86.3% backbone (s) full ckpt args logs

To extract the backbone from the full checkpoint by yourself, please run the following command where KEY being either student or teacher.

WEIGHT_FILE=$OUTPUT_DIR/checkpoint_$KEY.pth

python extract_backbone_weights.py \
  --checkpoint_key $KEY \
  $PRETRAINED \
  $WEIGHT_FILE \

Downstream Evaluation

See Evaluating iBOT on Downstream Tasks for details.

Property Analysis

See Analyzing iBOT's Properties for robustness test and visualizing self-attention map:

iBOT Global Pattern Layout

or extracting sparse correspondence pairs bwtween two images:

iBOT Global Pattern Layout

Extracting Semantic Patterns

We extract top-k numbered local classes based on patch tokens with their corresponding patches and contexts by running the following command. We indentify very diverse behaviour like shared low-level textures and high-level semantics.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type patch \
    --topk 36 \
    --patch_window 5 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_patch.pth \
    --data_path data/imagenet/val
iBOT Local Part-Level Pattern Layout

The script also supports to extract the patern layout on the [CLS] token, which is actually doing clustering or unsupervised classification. This property is not induced by MIM objective since we also spot this feature on DINO.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type cls \
    --topk 36 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_cls.pth \
    --data_path data/imagenet/val
iBOT Global Pattern Layout

Acknowledgement

This repository is built using the DINO repository and the BEiT repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citing iBOT

If you find this repository useful, please consider giving a star and citation:

@article{zhou2021ibot,
  title={iBOT: Image BERT Pre-Training with Online Tokenizer},
  author={Zhou, Jinghao and Wei, Chen and Wang, Huiyu and Shen, Wei and Xie, Cihang and Yuille, Alan and Kong, Tao},
  journal={arXiv preprint arXiv:2111.07832},
  year={2021}
}
Owner
Bytedance Inc.
Bytedance Inc.
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022