(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

Related tags

Deep LearningDARS
Overview

DARS

Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021 (oral).

framework

Authors: Ruifei He*, Jihan Yang*, Xiaojuan Qi (*equal contribution)

arxiv

Usage

Install

  • Clone this repo:
git clone https://https://github.com/CVMI-Lab/DARS.git
cd DARS
  • Create a conda virtual environment and activate it:
conda create -n DARS python=3.7 -y
conda activate DARS
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install opencv-python==4.4.0.46 tensorboardX pyyaml

Initialization weights

For PSPNet50, we follow PyTorch Semantic Segmentation and use Imagenet pre-trained weights, which could be found here.

For Deeplabv2, we follow the exact same settings in semisup-semseg, AdvSemiSeg and use Imagenet pre-trained weights.

mkdir initmodel  
# Put the initialization weights under this folder. 
# You can check model/pspnet.py or model/deeplabv2.py.

Data preparation

mkdir dataset  # put the datasets under this folder. You can verify the data path in config files.

Cityscapes

Download the dataset from the Cityscapes dataset server(Link). Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in dataset/cityscapes/.

For data split, we randomly split the 2975 training samples into 1/8, 7/8 and 1/4 and 3/4. The generated lists are provided in the data_split folder.

Note that since we define an epoch as going through all the samples in the unlabeled data and a batch consists of half labeled and half unlabeled, we repeat the shorter list (labeled list) to the length of the corresponding unlabeled list for convenience.

You can generate random split lists by yourself or use the ones that we provided. You should put them under dataset/cityscapes/list/.

PASCAL VOC 2012

The PASCAL VOC 2012 dataset we used is the commonly used 10582 training set version. If you are unfamiliar with it, please refer to this blog.

For data split, we use the official 1464 training images as labeled data and the 9k augmented set as unlabeled data. We also repeat the labeled list to match that of the unlabeled list.

You should also put the lists under dataset/voc2012/list/.

Training

The config files are located within config folder.

For PSPNet50, crop size 713 requires at least 4*16G GPUs or 8*10G GPUs, and crop size 361 requires at least 1*16G GPU or 2*10G GPUs.

For Deeplabv2, crop size 361 requires at least 1*16G GPU or 2*10G GPUs.

Please adjust the GPU settings in the config files ('train_gpu' and 'test_gpu') according to your machine setup.

The generation of pseudo labels would require 200G usage of disk space, reducing to only 600M after they are generated.

All training scripts for pspnet50 and deeplabv2 are in the tool/scripts folder. For example, to train PSPNet50 for the Cityscapes 1/8 split setting with crop size 713x713, use the following command:

sh tool/scripts/train_psp50_cityscapes_split8_crop713.sh

Acknowledgement

Our code is largely based on PyTorch Semantic Segmentation, and we thank the authors for their wonderful implementation.

We also thank the open-source code from semisup-semseg, AdvSemiSeg, DST-CBC.

Citation

If you find this project useful in your research, please consider cite:

@inproceedings{he2021re,
  title={Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation},
  author={He, Ruifei and Yang, Jihan and Qi, Xiaojuan},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={6930--6940},
  year={2021}
}
Owner
CVMI Lab
CVMI Lab
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023