[ICCV21] Self-Calibrating Neural Radiance Fields

Overview

Self-Calibrating Neural Radiance Fields, ICCV, 2021

Project Page | Paper | Video

Author Information

Types of camera parameters

News

  • 2021-09-02: The first version of Self-Calibrating Neural Radiance Fields is published

Overview

In this work, we propose a camera self-calibration algorithm for generic cameras with arbitrary non-linear distortions. We jointly learn the geometry of the scene and the accurate camera parameters without any calibration objects. Our camera model consists a pinhole model, radial distortion, and a generic noise model that can learn arbitrary non-linear camera distortions. While traditional self-calibration algorithms mostly rely on geometric constraints, we additionally incorporate photometric consistency. This requires learning the geometry of the scene and we use Neural Radiance Fields (NeRF). We also propose a new geometric loss function, viz., projected ray distance loss, to incorporate geometric consistency for complex non-linear camera models. We validate our approach on standard real image datasets and demonstrate our model can learn the camera intrinsics and extrinsics (pose) from scratch without COLMAP initialization. Also, we show that learning accurate camera models in differentiable manner allows us to improves PSNR over NeRF. We experimentally demonstrate that our proposed method is applicable to variants of NeRF. In addition, we use a set of images captured with a fish-eye lens to demonstrate that learning camera model jointly improves the performance significantly over the COLMAP initialization.

Method

Generic Camera Model

We provide the definition of our differentiable camera model that combines the pinhole camera model, radial distortion, and a generic non-linear camera distortion for self-calibration. Our differentiable generic camera model consists of four components: intrinsic, extrinsic, radial distortion, and non-linear distortion parameters. We show that modeling the rays more accurately (camera model) results in better neural rendering. The following figure shows the computational steps to generate rays of our proposed learnable generic camera model.

computational graph for rays

Projected Ray Distance

The generic camera model poses a new challenge defining a geometric loss. In most traditional work, the geometric loss is defined as an epipolar constraint that measures the distance between an epipolar line and the corresponding point, or reprojection error where a 3D point for a correspondence is defined first which is then projected to an image plane to measure the distance between the projection and the correspondence. In this work, rather than requiring a 3D reconstruction to compute an indirect loss like the reprojection error, we propose the projected ray distance loss that directly measures the discrepancy between rays using our generic camera model.

projected ray distance

Curriculum Learning

The camera parameters determine the positions and directions of the rays for NeRF learning, and unstable values often result in divergence or sub-optimal results. Thus, we incrementally add a subset of learning parameters to the optimization process to reduce the complexity of learning cameras and geometry jointly. First, we learn the NeRF network while initializing the camera focal lengths and camera centers to half the image width and height. Learning coarse geometry first is crucial since it initializes the network parameters suitable for learning better camera parameters. Next, we sequentially add camera parameters from the linear camera model, radial distortion, to nonlinear noise of ray direction, ray origin to the learning. We progressively make the camera model more complex to prevent the camera parameters from overfitting and also allows faster training.

curriculum learning

Installation

Requirements

  • Ubuntu 16.04 or higher
  • CUDA 11.1 or higher
  • Python v3.7 or higher
  • Pytorch v1.7 or higher
  • Hardware Spec
    • GPUs 11GB (2080ti) or larger capacity
    • For NeRF++, 2GPUs(2080ti) are required to reproduce the result
    • For FishEyeNeRF experiments, we have used 4GPUs(V100).

Environment Setup

  • We recommend to conda for installation. All the requirements for two codes, NeRF and NeRF++, are included in the requirements.txt

    conda create -n icn python=3.8
    conda activate icn
    pip install -r requirements.txt
    git submodule update --init --recursive
    

Pretrained Weights & Qualitative Results

Here, we provide pretrained weights for users to easily reproduce results in the paper. You can download the pretrained weight in the following link. In the link, we provide all the weights of experiments, reported in our paper. To load the pretrained weight, add the following argument at the end of argument in each script. In the zip file, we have also included qualitative results that are used in our paper.

Link to download the pretrained weight: [link]

Datasets

We use three datasets for evaluation: LLFF dataset, tanks and temples dataset, and FishEyeNeRF dataset (Images captured with a fish-eye lens).

Put the data in the directory "data/" then add soft link with one of the following:

ln -s data/nerf_llff_data NeRF/data
ln -s data/tanks_and_temples nerfplusplus/data
ln -s data/FishEyeNeRF nerfplusplus/data/fisheyenerf

Demo Code

The demo code is available at "demo.sh" file. This code runs curriculum learning in NeRF architecture. Please install the aforementioned requirements before running the code. To run the demo code, run:

sh demo.sh

If you want to reproduce the results that are reported in our main paper, run the scripts in the "scripts" directory.

Main Table 1: Self-Calibration Experiment (LLFF)
Main Table 2: Improvement over NeRF (LLFF)
Main Table 3: Improvement over NeRF++ (Tanks and Temples)
Main Table 4: Improvement over NeRF++ (Images with a fish-eye lens)

Code Example:

sh scripts/main_table_1/fern/main1_fern_ours.sh
sh scripts/main_table_2/fern/main2_fern_ours.sh
sh scripts/main_table_3/main_3_m60.sh
sh scripts/main_table_4/globe_ours.sh

Citing Self-Calibrating Neural Radiance Fields

@inproceedings{SCNeRF2021,
    author = {Yoonwoo Jeong, Seokjun Ahn, Christopehr Choy, Animashree Anandkumar, 
    Minsu Cho, and Jaesik Park},
    title = {Self-Calibrating Neural Radiance Fields},
    booktitle = {ICCV},
    year = {2021},
}

Concurrent Work

We list a few recent concurrent projects that tackle camera extrinsics (pose) optimization in NeRF. Note that our Self-Calibrating NeRF optimizes an extensive set of camera parameters for intrinsics, extrinsics, radial distortion, and non-linear distortion.

Acknowledgements

We appreciate all ICCV reviewers for valuable comments. Their valuable suggestions have helped us to improve our paper. We also acknowledge amazing implementations of NeRF++(https://github.com/Kai-46/nerfplusplus) and NeRF-pytorch(https://github.com/yenchenlin/nerf-pytorch).

BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022