[ICCV21] Self-Calibrating Neural Radiance Fields

Overview

Self-Calibrating Neural Radiance Fields, ICCV, 2021

Project Page | Paper | Video

Author Information

Types of camera parameters

News

  • 2021-09-02: The first version of Self-Calibrating Neural Radiance Fields is published

Overview

In this work, we propose a camera self-calibration algorithm for generic cameras with arbitrary non-linear distortions. We jointly learn the geometry of the scene and the accurate camera parameters without any calibration objects. Our camera model consists a pinhole model, radial distortion, and a generic noise model that can learn arbitrary non-linear camera distortions. While traditional self-calibration algorithms mostly rely on geometric constraints, we additionally incorporate photometric consistency. This requires learning the geometry of the scene and we use Neural Radiance Fields (NeRF). We also propose a new geometric loss function, viz., projected ray distance loss, to incorporate geometric consistency for complex non-linear camera models. We validate our approach on standard real image datasets and demonstrate our model can learn the camera intrinsics and extrinsics (pose) from scratch without COLMAP initialization. Also, we show that learning accurate camera models in differentiable manner allows us to improves PSNR over NeRF. We experimentally demonstrate that our proposed method is applicable to variants of NeRF. In addition, we use a set of images captured with a fish-eye lens to demonstrate that learning camera model jointly improves the performance significantly over the COLMAP initialization.

Method

Generic Camera Model

We provide the definition of our differentiable camera model that combines the pinhole camera model, radial distortion, and a generic non-linear camera distortion for self-calibration. Our differentiable generic camera model consists of four components: intrinsic, extrinsic, radial distortion, and non-linear distortion parameters. We show that modeling the rays more accurately (camera model) results in better neural rendering. The following figure shows the computational steps to generate rays of our proposed learnable generic camera model.

computational graph for rays

Projected Ray Distance

The generic camera model poses a new challenge defining a geometric loss. In most traditional work, the geometric loss is defined as an epipolar constraint that measures the distance between an epipolar line and the corresponding point, or reprojection error where a 3D point for a correspondence is defined first which is then projected to an image plane to measure the distance between the projection and the correspondence. In this work, rather than requiring a 3D reconstruction to compute an indirect loss like the reprojection error, we propose the projected ray distance loss that directly measures the discrepancy between rays using our generic camera model.

projected ray distance

Curriculum Learning

The camera parameters determine the positions and directions of the rays for NeRF learning, and unstable values often result in divergence or sub-optimal results. Thus, we incrementally add a subset of learning parameters to the optimization process to reduce the complexity of learning cameras and geometry jointly. First, we learn the NeRF network while initializing the camera focal lengths and camera centers to half the image width and height. Learning coarse geometry first is crucial since it initializes the network parameters suitable for learning better camera parameters. Next, we sequentially add camera parameters from the linear camera model, radial distortion, to nonlinear noise of ray direction, ray origin to the learning. We progressively make the camera model more complex to prevent the camera parameters from overfitting and also allows faster training.

curriculum learning

Installation

Requirements

  • Ubuntu 16.04 or higher
  • CUDA 11.1 or higher
  • Python v3.7 or higher
  • Pytorch v1.7 or higher
  • Hardware Spec
    • GPUs 11GB (2080ti) or larger capacity
    • For NeRF++, 2GPUs(2080ti) are required to reproduce the result
    • For FishEyeNeRF experiments, we have used 4GPUs(V100).

Environment Setup

  • We recommend to conda for installation. All the requirements for two codes, NeRF and NeRF++, are included in the requirements.txt

    conda create -n icn python=3.8
    conda activate icn
    pip install -r requirements.txt
    git submodule update --init --recursive
    

Pretrained Weights & Qualitative Results

Here, we provide pretrained weights for users to easily reproduce results in the paper. You can download the pretrained weight in the following link. In the link, we provide all the weights of experiments, reported in our paper. To load the pretrained weight, add the following argument at the end of argument in each script. In the zip file, we have also included qualitative results that are used in our paper.

Link to download the pretrained weight: [link]

Datasets

We use three datasets for evaluation: LLFF dataset, tanks and temples dataset, and FishEyeNeRF dataset (Images captured with a fish-eye lens).

Put the data in the directory "data/" then add soft link with one of the following:

ln -s data/nerf_llff_data NeRF/data
ln -s data/tanks_and_temples nerfplusplus/data
ln -s data/FishEyeNeRF nerfplusplus/data/fisheyenerf

Demo Code

The demo code is available at "demo.sh" file. This code runs curriculum learning in NeRF architecture. Please install the aforementioned requirements before running the code. To run the demo code, run:

sh demo.sh

If you want to reproduce the results that are reported in our main paper, run the scripts in the "scripts" directory.

Main Table 1: Self-Calibration Experiment (LLFF)
Main Table 2: Improvement over NeRF (LLFF)
Main Table 3: Improvement over NeRF++ (Tanks and Temples)
Main Table 4: Improvement over NeRF++ (Images with a fish-eye lens)

Code Example:

sh scripts/main_table_1/fern/main1_fern_ours.sh
sh scripts/main_table_2/fern/main2_fern_ours.sh
sh scripts/main_table_3/main_3_m60.sh
sh scripts/main_table_4/globe_ours.sh

Citing Self-Calibrating Neural Radiance Fields

@inproceedings{SCNeRF2021,
    author = {Yoonwoo Jeong, Seokjun Ahn, Christopehr Choy, Animashree Anandkumar, 
    Minsu Cho, and Jaesik Park},
    title = {Self-Calibrating Neural Radiance Fields},
    booktitle = {ICCV},
    year = {2021},
}

Concurrent Work

We list a few recent concurrent projects that tackle camera extrinsics (pose) optimization in NeRF. Note that our Self-Calibrating NeRF optimizes an extensive set of camera parameters for intrinsics, extrinsics, radial distortion, and non-linear distortion.

Acknowledgements

We appreciate all ICCV reviewers for valuable comments. Their valuable suggestions have helped us to improve our paper. We also acknowledge amazing implementations of NeRF++(https://github.com/Kai-46/nerfplusplus) and NeRF-pytorch(https://github.com/yenchenlin/nerf-pytorch).

Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022