[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Overview

Structured Sparse R-CNN for Direct Scene Graph Generation

Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVPR 2022.

Requirements

Environments: python 3.8, cuda 10.1, pytorch 1.7.1

To install requirements:

conda create --name scene_graph_benchmark
conda activate scene_graph_benchmark

pip install --user ipython
pip install --user scipy
pip install --user h5py
pip install --user pyyaml
pip install --user yacs
pip install --user scipy
pip install --user h5py
pip install --user tqdm
pip install --user opencv-python

pip install --user ninja yacs cython matplotlib tqdm opencv-python overrides


conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext

# put our code SGGbench into your directory, such as /home/username
cd /home/username/SGGbench 
python setup.py build develop

Datasets

VG

For the dataset and pretrained backbone weights preparation, please follow: Scene-Graph-Benchmark.pytorch

OI v4, v6

For the datasets and pretrained backbone weights preparation, please follow: BGNN-SGG. Actually, BGNN-SGG is also compatible with Scene-Graph-Benchmark.pytorch.

Training

VG

On VG, we notice ~0.2 [email protected] noise for our model with 300 queries.

To train the model with 300 triplet queries in the paper, run this command. The results are [email protected]: 36.9; [email protected]: 3.7; [email protected]: 10.0: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 800 triplet queries in the paper, run this command. The results are [email protected]: 38.4; [email protected]: 4.0; [email protected]: 10.3: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 300 triplet queries and backbone, run this command. The results are [email protected]: 36.7; [email protected]: 3.8; [email protected]: 10.1: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" SOLVER.BACKBONE_MULTIPLIER 0.1 MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel_bkb MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE False MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V4

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov4_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V6

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov6_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

Evaluation

VG

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

800 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V4

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V6

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

Pre-trained Models

You can download pretrained models here:

VG

300 queries

800 queries

OI V4

300 queries

OI V6

300 queries

Results

Our model achieves the following performance on :

Visual Genome

* means 800 queries.

Models SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected]
Our model 25.8 32.7 36.9 1.5 2.7 3.7 6.1 8.4 10.0
Our model* 26.1 33.5 38.4 1.5 2.7 4.0 6.2 8.6 10.3
Our model+TDE 14.5 18.3 21.0 1.8 2.7 3.6 10.8 15.0 18.5
Our model*+TDE 15.0 19.7 22.9 1.6 2.7 3.8 9.8 14.6 18.0
Our model+LA 18.4 23.3 26.5 1.9 2.9 4.0 13.5 17.9 21.4
Our model*+LA 18.2 23.7 27.3 2.0 3.1 4.5 13.7 18.6 22.5

Acknowledgement

Our code is mainly based on: Scene-Graph-Benchmark.pytorch, SparseR-CNN and BGNN-SGG.

For this paper, I'm extremely grateful to my advisor Prof. Limin Wang. I should also appreciate my group members for discussing with me: Jing Tan, Ziteng Gao and Jiaqi Tang.

Citations

@inproceedings{ssrcnnsgg22cvpr,
  author    = {Yao Teng and
               Limin Wang},
  title     = {Structured Sparse {R-CNN} for Direct Scene Graph Generation},
  booktitle = {{CVPR}},
  year      = {2022}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022