[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Overview

Structured Sparse R-CNN for Direct Scene Graph Generation

Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVPR 2022.

Requirements

Environments: python 3.8, cuda 10.1, pytorch 1.7.1

To install requirements:

conda create --name scene_graph_benchmark
conda activate scene_graph_benchmark

pip install --user ipython
pip install --user scipy
pip install --user h5py
pip install --user pyyaml
pip install --user yacs
pip install --user scipy
pip install --user h5py
pip install --user tqdm
pip install --user opencv-python

pip install --user ninja yacs cython matplotlib tqdm opencv-python overrides


conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext

# put our code SGGbench into your directory, such as /home/username
cd /home/username/SGGbench 
python setup.py build develop

Datasets

VG

For the dataset and pretrained backbone weights preparation, please follow: Scene-Graph-Benchmark.pytorch

OI v4, v6

For the datasets and pretrained backbone weights preparation, please follow: BGNN-SGG. Actually, BGNN-SGG is also compatible with Scene-Graph-Benchmark.pytorch.

Training

VG

On VG, we notice ~0.2 [email protected] noise for our model with 300 queries.

To train the model with 300 triplet queries in the paper, run this command. The results are [email protected]: 36.9; [email protected]: 3.7; [email protected]: 10.0: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 800 triplet queries in the paper, run this command. The results are [email protected]: 38.4; [email protected]: 4.0; [email protected]: 10.3: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 300 triplet queries and backbone, run this command. The results are [email protected]: 36.7; [email protected]: 3.8; [email protected]: 10.1: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" SOLVER.BACKBONE_MULTIPLIER 0.1 MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel_bkb MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE False MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V4

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov4_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V6

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov6_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

Evaluation

VG

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

800 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V4

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V6

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

📋 Before testing, create a new directory, named 'eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

📋 Before testing, create a new directory, named 'la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

Pre-trained Models

You can download pretrained models here:

VG

300 queries

800 queries

OI V4

300 queries

OI V6

300 queries

Results

Our model achieves the following performance on :

Visual Genome

* means 800 queries.

Models SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected]
Our model 25.8 32.7 36.9 1.5 2.7 3.7 6.1 8.4 10.0
Our model* 26.1 33.5 38.4 1.5 2.7 4.0 6.2 8.6 10.3
Our model+TDE 14.5 18.3 21.0 1.8 2.7 3.6 10.8 15.0 18.5
Our model*+TDE 15.0 19.7 22.9 1.6 2.7 3.8 9.8 14.6 18.0
Our model+LA 18.4 23.3 26.5 1.9 2.9 4.0 13.5 17.9 21.4
Our model*+LA 18.2 23.7 27.3 2.0 3.1 4.5 13.7 18.6 22.5

Acknowledgement

Our code is mainly based on: Scene-Graph-Benchmark.pytorch, SparseR-CNN and BGNN-SGG.

For this paper, I'm extremely grateful to my advisor Prof. Limin Wang. I should also appreciate my group members for discussing with me: Jing Tan, Ziteng Gao and Jiaqi Tang.

Citations

@inproceedings{ssrcnnsgg22cvpr,
  author    = {Yao Teng and
               Limin Wang},
  title     = {Structured Sparse {R-CNN} for Direct Scene Graph Generation},
  booktitle = {{CVPR}},
  year      = {2022}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022