[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Overview

Structured Sparse R-CNN for Direct Scene Graph Generation

Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVPR 2022.

Requirements

Environments: python 3.8, cuda 10.1, pytorch 1.7.1

To install requirements:

conda create --name scene_graph_benchmark
conda activate scene_graph_benchmark

pip install --user ipython
pip install --user scipy
pip install --user h5py
pip install --user pyyaml
pip install --user yacs
pip install --user scipy
pip install --user h5py
pip install --user tqdm
pip install --user opencv-python

pip install --user ninja yacs cython matplotlib tqdm opencv-python overrides


conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext

# put our code SGGbench into your directory, such as /home/username
cd /home/username/SGGbench 
python setup.py build develop

Datasets

VG

For the dataset and pretrained backbone weights preparation, please follow: Scene-Graph-Benchmark.pytorch

OI v4, v6

For the datasets and pretrained backbone weights preparation, please follow: BGNN-SGG. Actually, BGNN-SGG is also compatible with Scene-Graph-Benchmark.pytorch.

Training

VG

On VG, we notice ~0.2 [email protected] noise for our model with 300 queries.

To train the model with 300 triplet queries in the paper, run this command. The results are [email protected]: 36.9; [email protected]: 3.7; [email protected]: 10.0: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 800 triplet queries in the paper, run this command. The results are [email protected]: 38.4; [email protected]: 4.0; [email protected]: 10.3: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

To train the model with 300 triplet queries and backbone, run this command. The results are [email protected]: 36.7; [email protected]: 3.8; [email protected]: 10.1: (8 V100 32G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" SOLVER.BACKBONE_MULTIPLIER 0.1 MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel_bkb MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE False MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V4

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov4_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

OI V6

To train the model with 300 triplet queries in the paper, run this command: (8 RTX 2080ti 11G)

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_train_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.PRETRAINED_DETECTOR_CKPT checkpoints/iov6_pretrain_faster_rcnn/model_final.pth OUTPUT_DIR Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

Evaluation

VG

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

πŸ“‹ Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

πŸ“‹ Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

πŸ“‹ Before testing, create a new directory, named 'la03_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

800 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

πŸ“‹ Before testing, create a new directory, named 'eva_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with TDE, run:

CUDA_VISIBLE_DEVICES=2,3,4,5 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS True MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

πŸ“‹ Before testing, create a new directory, named 'tde_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=3,5,6,7 python -m torch.distributed.launch --master_port 10029 --nproc_per_node=4 tools/relation_test_net.py --config-file "configs/simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 800 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 256 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

πŸ“‹ Before testing, create a new directory, named 'LA03_real025kl_newe2rposition_fullobjbranch_800q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V4

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

πŸ“‹ Before testing, create a new directory, named 'eva_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv4_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

πŸ“‹ Before testing, create a new directory, named 'la_oiv4_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

OI V6

300 queries

To evaluate my model, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True

πŸ“‹ Before testing, create a new directory, named 'eva_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

To evaluate my model with our LA, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --master_port 10020 --nproc_per_node=8 tools/relation_test_net.py --config-file "configs/oiv6_simrel_e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 8 SOLVER.VAL_PERIOD 12000 SOLVER.MAX_ITER 80000 SOLVER.STEPS '(47000, 64000)' SOLVER.BASE_LR 0.000008 SOLVER.OPTIMIZER "ADAMW" MODEL.WEIGHT Outputs/oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel/model_final.pth OUTPUT_DIR Outputs/la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM 1024 MODEL.SimrelRCNN.ENABLE_BG_OBJ False MODEL.SimrelRCNN.ENABLE_REL_X2Y True MODEL.SimrelRCNN.REL_DIM 256 MODEL.SimrelRCNN.NUM_PROPOSALS 300 MODEL.SimrelRCNN.NUM_HEADS 6 MODEL.SimrelRCNN.REL_STACK_NUM 6 MODEL.SimrelRCNN.TRIPLET_MASK_WEIGHT 1.0 MODEL.SimrelRCNN.FREEZE_BACKBONE True MODEL.SimrelRCNN.CROSS_OBJ_FEAT_FUSION False MODEL.SimrelRCNN.CLASS_WEIGHT 1.333 MODEL.SimrelRCNN.L1_WEIGHT 5.0 MODEL.SimrelRCNN.GIOU_WEIGHT 2.0 GLOVE_DIR '' MODEL.SimrelRCNN.ENABLE_FREQ False MODEL.SimrelRCNN.ENABLE_QUERY_REVERSE False MODEL.SimrelRCNN.USE_REFINE_OBJ_FEATURE True MODEL.SimrelRCNN.FREEZE_PUREE_OBJDET False MODEL.SimrelRCNN.PURE_ENT_NUM_PROPOSALS 100 MODEL.SimrelRCNN.ENABLE_MASK_BRANCH False MODEL.SimrelRCNN.KL_BRANCH_WEIGHT 0.25 MODEL.SimrelRCNN.ENABLE_KL_BRANCH True MODEL.SimrelRCNN.POSI_ENCODE_DIM 64 MODEL.SimrelRCNN.REL_CLASS_WEIGHT 1.334 MODEL.SimrelRCNN.PURE_ENT_CLASS_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_GIOU_WEIGHT 2.0 MODEL.SimrelRCNN.PURE_ENT_L1_WEIGHT 5.0 MODEL.SimrelRCNN.AUXILIARY_BRANCH True MODEL.SimrelRCNN.AUXILIARY_BRANCH_SELECT_ENT_MAX_NUM 25 MODEL.SimrelRCNN.AUXILIARY_BRANCH_START 11 MODEL.SimrelRCNN.ENABLE_ENT_PROP True MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS False MODEL.SimrelRCNN.USE_CROSS_RANK False MODEL.SimrelRCNN.DISABLE_KQ_FUSION_SELFATTEN False MODEL.SimrelRCNN.DIM_ENT_PRE_CLS 1024 MODEL.SimrelRCNN.DIM_ENT_PRE_REG 256 MODEL.SimrelRCNN.ONE_REL_CONV True MODEL.SimrelRCNN.ENABLE_BATCH_REDUCTION True MODEL.SimrelRCNN.USE_HARD_LABEL_KLMATCH True MODEL.SimrelRCNN.DISABLE_OBJ2REL_LOSS True MODEL.SimrelRCNN.REL_LOGITS_ADJUSTMENT True MODEL.SimrelRCNN.LOGIT_ADJ_TAU 0.3

πŸ“‹ Before testing, create a new directory, named 'la_oiv6_real025kl_newe2rposition_fullobjbranch_300q_smalldyconv_prequeryaug9_norel_hardlabel', in ./SGGbench/Outputs/ .

Pre-trained Models

You can download pretrained models here:

VG

300 queries

800 queries

OI V4

300 queries

OI V6

300 queries

Results

Our model achieves the following performance on :

Visual Genome

* means 800 queries.

Models SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected] SGGen [email protected]
Our model 25.8 32.7 36.9 1.5 2.7 3.7 6.1 8.4 10.0
Our model* 26.1 33.5 38.4 1.5 2.7 4.0 6.2 8.6 10.3
Our model+TDE 14.5 18.3 21.0 1.8 2.7 3.6 10.8 15.0 18.5
Our model*+TDE 15.0 19.7 22.9 1.6 2.7 3.8 9.8 14.6 18.0
Our model+LA 18.4 23.3 26.5 1.9 2.9 4.0 13.5 17.9 21.4
Our model*+LA 18.2 23.7 27.3 2.0 3.1 4.5 13.7 18.6 22.5

Acknowledgement

Our code is mainly based on: Scene-Graph-Benchmark.pytorch, SparseR-CNN and BGNN-SGG.

For this paper, I'm extremely grateful to my advisor Prof. Limin Wang. I should also appreciate my group members for discussing with me: Jing Tan, Ziteng Gao and Jiaqi Tang.

Citations

@inproceedings{ssrcnnsgg22cvpr,
  author    = {Yao Teng and
               Limin Wang},
  title     = {Structured Sparse {R-CNN} for Direct Scene Graph Generation},
  booktitle = {{CVPR}},
  year      = {2022}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) GΓΌl Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | δΈ­ζ–‡ FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022