Code release of paper "Deep Multi-View Stereo gone wild"

Overview

Deep MVS gone wild

Pytorch implementation of "Deep MVS gone wild" (Paper | website)

This repository provides the code to reproduce the experiments of the paper. It implements extensive comparison of Deep MVS architecture, training data and supervision.

If you find this repository useful for your research, please consider citing

@article{
  author    = {Darmon, Fran{\c{c}}ois  and
               Bascle, B{\'{e}}n{\'{e}}dicte  and
               Devaux, Jean{-}Cl{\'{e}}ment  and
               Monasse, Pascal  and
               Aubry, Mathieu},
  title     = {Deep Multi-View Stereo gone wild},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.15119},
}

Installation

  • Python packages: see requirements.txt

  • Fusibile:

git clone https://github.com/YoYo000/fusibile 
cd fusibile
cmake .
make .
ln -s EXE ./fusibile
  • COLMAP: see the github repository for installation details then link colmap executable with ln -s COLMAP_DIR/build/src/exe/colmap colmap

Training

You may find all the pretrained models here (120 Mo) or alternatively you can train models using the following instructions.

Data

Download the following data and extract to folder datasets

The directory structure should be as follow:

datasets
├─ blended
├─ dtu_train
├─ MegaDepth_v1
├─ undistorted_md_geometry

The data is already preprocessed for DTU and BlendedMVS. For MegaDepth, run python preprocess.py for generating the training data.

Script

The training script is train.py, launch python train.py --help for all the options. For example

  • python train.py --architecture vis_mvsnet --dataset md --supervised --logdir best_sup --world_size 4 --batch_size 4 for training the best performing setup for images in the wild.
  • python train.py --architecture mvsnet-s --dataset md --unsupervised --upsample --occ_masking --epochs 5 --lrepochs 4:10 --logdir best_unsup --world_size 3 for the best unsupervised model.

The models are saved in folder trained_models

Evaluations

We provide code for both depthmap evaluation and 3D reconstruction evaluation

Data

Download the following links and extract them to datasets

  • BlendedMVS (27.5 GB) same link as BlendedMVS training data

  • YFCC depth maps (1.1Go)

  • DTU MVS benchmark: Create directory datasets/dtu_eval and extract the following files

    In the end the folder structure should be

    datasets
    ├─ dtu_eval
        ├─ ObsMask
        ├─ images
        ├─ Points
            ├─ stl
    
  • YFCC 3D reconstruction (1.5Go)

Depthmap evaluation

python depthmap_eval.py --model MODEL --dataset DATA

  • MODEL is the name of a folder found in trained_models
  • DATA is the evaluation dataset, either yfcc or blended

3D reconstruction

See python reconstruction_pipeline.py --help for a complete list of parameters for 3D reconstruction. For running the whole evaluation for a trained model with the parameters used in the paper, run

  • scripts/eval3d_dtu.sh --model MODEL (--compute_metrics) for DTU evaluation
  • scripts/eval3d_yfcc.sh --model MODEL (--compute_metrics) for YFCC 3D evaluation

The reconstruction will be located in datasets/dtu_eval/Points or datasets/yfcc_data/Points

Acknowledgments

This repository is inspired by MVSNet_pytorch and MVSNet repositories. We also adapt the official implementations of Vis_MVSNet and CVP_MVSNet.

Copyright

Deep MVS Gone Wild All rights reseved to Thales LAS and ENPC.

This code is freely available for academic use only and Provided “as is” without any warranty.

Modification are allowed for academic research provided that the following conditions are met :
  * Redistributions of source code or any format must retain the above copyright notice and this list of conditions.
  * Neither the name of Thales LAS and ENPC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
Owner
François Darmon
PhD student in 3D computer vision at Imagine team ENPC and Thales LAS FRANCE
François Darmon
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022