List of awesome things around semantic segmentation 🎉

Overview

Awesome Semantic Segmentation

Awesome

List of awesome things around semantic segmentation 🎉

Semantic segmentation is a computer vision task in which we label specific regions of an image according to what's being shown. Semantic segmentation awswers for the question: "What's in this image, and where in the image is it located?".

Semantic segmentation is a critical module in robotics related applications, especially autonomous driving, remote sensing. Most of the research on semantic segmentation is focused on improving the accuracy with less attention paid to computationally efficient solutions.

Seft-driving-car

The recent appoarch in semantic segmentation is using deep neural network, specifically Fully Convolutional Network (a.k.a FCN). We can follow the trend of semantic segmenation approach at: paper-with-code.

Evaluate metrics: mIOU, accuracy, speed,...

State-Of-The-Art (SOTA) methods of Semantic Segmentation

Paper Benchmark on PASALVOC12 Release Implement
EfficientNet-L2+NAS-FPN Rethinking Pre-training and Self-training 90.5% NeurIPS 2020 TF
DeepLab V3+ Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation 89% ECCV 2018 TF, Keras, Pytorch, Demo
DeepLab V3 Rethinking Atrous Convolution for Semantic Image Segmentation 86.9% 17 Jun 2017 TF, TF
Smooth Network with Channel Attention Block Learning a Discriminative Feature Network for Semantic Segmentation 86.2% CVPR 2018 Pytorch
PSPNet Pyramid Scene Parsing Network 85.4% CVPR 2017 Keras, Pytorch, Pytorch
ResNet-38 MS COCO Wider or Deeper: Revisiting the ResNet Model for Visual Recognition 84.9% 30 Nov 2016 MXNet
RefineNet RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation 84.2% CVPR 2017 Matlab, Keras
GCN Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network 83.6% CVPR 2017 TF
CRF-RNN Conditional Random Fields as Recurrent Neural Networks 74.7% ICCV 2015 Matlab, TF
ParseNet ParseNet: Looking Wider to See Better 69.8% 15 Jun 2015 Caffe
Dilated Convolutions Multi-Scale Context Aggregation by Dilated Convolutions 67.6% 23 Nov 2015 Caffe
FCN Fully Convolutional Networks for Semantic Segmentation 67.2% CVPR 2015 Caffe

Variants

  • FCN with VGG(Resnet, Densenet) backbone: pytorch
  • The easiest implementation of fully convolutional networks (FCN8s VGG): pytorch
  • TernausNet (UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset paper: pytorch
  • TernausNetV2: Fully Convolutional Network for Instance Segmentation: pytorch

Review list of Semantic Segmentation

  • Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey 2020 (University of Gour Banga,India)
  • A peek of Semantic Segmentation 2018 (mc.ai)
  • Semantic Segmentation guide 2018 (towardds)
  • An overview of semantic image segmentation (jeremyjordan.me)
  • Recent progress in semantic image segmentation 2018 (arxiv, towardsdatascience)
  • A 2017 Guide to Semantic Segmentation Deep Learning Review (blog.qure.ai)
  • Review popular network architecture (medium-towardds)
  • Lecture 11 - Detection and Segmentation - CS231n (slide, vid):
  • A Survey of Semantic Segmentation 2016 (arxiv)

Case studies

  • Dstl Satellite Imagery Competition, 3rd Place Winners' Interview: Vladimir & Sergey: Blog, Code
  • Carvana Image Masking Challenge–1st Place Winner's Interview: Blog, Code
  • Data Science Bowl 2017, Predicting Lung Cancer: Solution Write-up, Team Deep Breath: Blog
  • MICCAI 2017 Robotic Instrument Segmentation: Code and explain
  • 2018 Data Science Bowl Find the nuclei in divergent images to advance medical discovery: 1st place, 2nd, 3rd, 4th, 5th, 10th
  • Airbus Ship Detection Challenge: 4th place, 6th

Most used loss functions

  • Pixel-wise cross entropy loss:
  • Dice loss: which is pretty nice for balancing dataset
  • Focal loss:
  • Lovasz-Softmax loss:

Datasets

Frameworks for segmentation

Related techniques

Feel free to show your ❤️ by giving a star

🎁 Check Out the List of Contributors - Feel free to add your details here!

Owner
Dam Minh Tien
Tech enthusiast
Dam Minh Tien
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022