PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

Related tags

Deep Learningmoco-v3
Overview

MoCo v3 for Self-supervised ResNet and ViT

Introduction

This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

The original MoCo v3 was implemented in Tensorflow and run in TPUs. This repo re-implements in PyTorch and GPUs. Despite the library and numerical differences, this repo reproduces the results and observations in the paper.

Main Results

The following results are based on ImageNet-1k self-supervised pre-training, followed by ImageNet-1k supervised training for linear evaluation or end-to-end fine-tuning. All results in these tables are based on a batch size of 4096.

ResNet-50, linear classification

pretrain
epochs
pretrain
crops
linear
acc
100 2x224 68.9
300 2x224 72.8
1000 2x224 74.6

ViT, linear classification

model pretrain
epochs
pretrain
crops
linear
acc
ViT-Small 300 2x224 73.2
ViT-Base 300 2x224 76.7

ViT, end-to-end fine-tuning

model pretrain
epochs
pretrain
crops
e2e
acc
ViT-Small 300 2x224 81.4
ViT-Base 300 2x224 83.2

The end-to-end fine-tuning results are obtained using the DeiT repo, using all the default DeiT configs. ViT-B is fine-tuned for 150 epochs (vs DeiT-B's 300ep, which has 81.8% accuracy).

Usage: Preparation

Install PyTorch and download the ImageNet dataset following the official PyTorch ImageNet training code. Similar to MoCo v1/2, this repo contains minimal modifications on the official PyTorch ImageNet code. We assume the user can successfully run the official PyTorch ImageNet code. For ViT models, install timm (timm==0.4.9).

The code has been tested with CUDA 10.2/CuDNN 7.6.5, PyTorch 1.9.0 and timm 0.4.9.

Usage: Self-supervised Pre-Training

Below are three examples for MoCo v3 pre-training.

ResNet-50 with 2-node (16-GPU) training, batch 4096

On the first node, run:

python main_moco.py \
  --moco-m-cos --crop-min=.2 \
  --dist-url 'tcp://[your first node address]:[specified port]' \
  --multiprocessing-distributed --world-size 2 --rank 0 \
  [your imagenet-folder with train and val folders]

On the second node, run the same command with --rank 1. With a batch size of 4096, the training can fit into 2 nodes with a total of 16 Volta 32G GPUs.

ViT-Small with 1-node (8-GPU) training, batch 1024

python main_moco.py \
  -a vit_small -b 1024 \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

ViT-Base with 8-node training, batch 4096

With a batch size of 4096, ViT-Base is trained with 8 nodes:

python main_moco.py \
  -a vit_base \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://[your first node address]:[specified port]' \
  --multiprocessing-distributed --world-size 8 --rank 0 \
  [your imagenet-folder with train and val folders]

On other nodes, run the same command with --rank 1, ..., --rank 7 respectively.

Notes:

  1. The batch size specified by -b is the total batch size across all GPUs.
  2. The learning rate specified by --lr is the base lr, and is adjusted by the linear lr scaling rule in this line.
  3. Using a smaller batch size has a more stable result (see paper), but has lower speed. Using a large batch size is critical for good speed in TPUs (as we did in the paper).
  4. In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported. This code is improved to better suit the multi-node setting, and by default uses automatic mixed-precision for pre-training.

Usage: Linear Classification

By default, we use momentum-SGD and a batch size of 1024 for linear classification on frozen features/weights. This can be done with a single 8-GPU node.

python main_lincls.py \
  -a [architecture] --lr [learning rate] \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --pretrained [your checkpoint path]/[your checkpoint file].pth.tar \
  [your imagenet-folder with train and val folders]

Usage: End-to-End Fine-tuning ViT

To perform end-to-end fine-tuning for ViT, use our script to convert the pre-trained ViT checkpoint to DEiT format:

python convert_to_deit.py \
  --input [your checkpoint path]/[your checkpoint file].pth.tar \
  --output [target checkpoint file].pth

Then run the training (in the DeiT repo) with the converted checkpoint:

python $DEIT_DIR/main.py \
  --resume [target checkpoint file].pth \
  --epochs 150

This gives us 83.2% accuracy for ViT-Base with 150-epoch fine-tuning.

Note:

  1. We use --resume rather than --finetune in the DeiT repo, as its --finetune option trains under eval mode. When loading the pre-trained model, revise model_without_ddp.load_state_dict(checkpoint['model']) with strict=False.
  2. Our ViT-Small is with heads=12 in the Transformer block, while by default in DeiT it is heads=6. Please modify the DeiT code accordingly when fine-tuning our ViT-Small model.

Model Configs

See the commands listed in CONFIG.md.

Transfer Learning

See the instruction in the transfer dir.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

@Article{chen2021mocov3,
  author  = {Xinlei Chen* and Saining Xie* and Kaiming He},
  title   = {An Empirical Study of Training Self-Supervised Vision Transformers},
  journal = {arXiv preprint arXiv:2104.02057},
  year    = {2021},
}
Owner
Facebook Research
Facebook Research
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022