PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

Related tags

Deep Learningmoco-v3
Overview

MoCo v3 for Self-supervised ResNet and ViT

Introduction

This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

The original MoCo v3 was implemented in Tensorflow and run in TPUs. This repo re-implements in PyTorch and GPUs. Despite the library and numerical differences, this repo reproduces the results and observations in the paper.

Main Results

The following results are based on ImageNet-1k self-supervised pre-training, followed by ImageNet-1k supervised training for linear evaluation or end-to-end fine-tuning. All results in these tables are based on a batch size of 4096.

ResNet-50, linear classification

pretrain
epochs
pretrain
crops
linear
acc
100 2x224 68.9
300 2x224 72.8
1000 2x224 74.6

ViT, linear classification

model pretrain
epochs
pretrain
crops
linear
acc
ViT-Small 300 2x224 73.2
ViT-Base 300 2x224 76.7

ViT, end-to-end fine-tuning

model pretrain
epochs
pretrain
crops
e2e
acc
ViT-Small 300 2x224 81.4
ViT-Base 300 2x224 83.2

The end-to-end fine-tuning results are obtained using the DeiT repo, using all the default DeiT configs. ViT-B is fine-tuned for 150 epochs (vs DeiT-B's 300ep, which has 81.8% accuracy).

Usage: Preparation

Install PyTorch and download the ImageNet dataset following the official PyTorch ImageNet training code. Similar to MoCo v1/2, this repo contains minimal modifications on the official PyTorch ImageNet code. We assume the user can successfully run the official PyTorch ImageNet code. For ViT models, install timm (timm==0.4.9).

The code has been tested with CUDA 10.2/CuDNN 7.6.5, PyTorch 1.9.0 and timm 0.4.9.

Usage: Self-supervised Pre-Training

Below are three examples for MoCo v3 pre-training.

ResNet-50 with 2-node (16-GPU) training, batch 4096

On the first node, run:

python main_moco.py \
  --moco-m-cos --crop-min=.2 \
  --dist-url 'tcp://[your first node address]:[specified port]' \
  --multiprocessing-distributed --world-size 2 --rank 0 \
  [your imagenet-folder with train and val folders]

On the second node, run the same command with --rank 1. With a batch size of 4096, the training can fit into 2 nodes with a total of 16 Volta 32G GPUs.

ViT-Small with 1-node (8-GPU) training, batch 1024

python main_moco.py \
  -a vit_small -b 1024 \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

ViT-Base with 8-node training, batch 4096

With a batch size of 4096, ViT-Base is trained with 8 nodes:

python main_moco.py \
  -a vit_base \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://[your first node address]:[specified port]' \
  --multiprocessing-distributed --world-size 8 --rank 0 \
  [your imagenet-folder with train and val folders]

On other nodes, run the same command with --rank 1, ..., --rank 7 respectively.

Notes:

  1. The batch size specified by -b is the total batch size across all GPUs.
  2. The learning rate specified by --lr is the base lr, and is adjusted by the linear lr scaling rule in this line.
  3. Using a smaller batch size has a more stable result (see paper), but has lower speed. Using a large batch size is critical for good speed in TPUs (as we did in the paper).
  4. In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported. This code is improved to better suit the multi-node setting, and by default uses automatic mixed-precision for pre-training.

Usage: Linear Classification

By default, we use momentum-SGD and a batch size of 1024 for linear classification on frozen features/weights. This can be done with a single 8-GPU node.

python main_lincls.py \
  -a [architecture] --lr [learning rate] \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --pretrained [your checkpoint path]/[your checkpoint file].pth.tar \
  [your imagenet-folder with train and val folders]

Usage: End-to-End Fine-tuning ViT

To perform end-to-end fine-tuning for ViT, use our script to convert the pre-trained ViT checkpoint to DEiT format:

python convert_to_deit.py \
  --input [your checkpoint path]/[your checkpoint file].pth.tar \
  --output [target checkpoint file].pth

Then run the training (in the DeiT repo) with the converted checkpoint:

python $DEIT_DIR/main.py \
  --resume [target checkpoint file].pth \
  --epochs 150

This gives us 83.2% accuracy for ViT-Base with 150-epoch fine-tuning.

Note:

  1. We use --resume rather than --finetune in the DeiT repo, as its --finetune option trains under eval mode. When loading the pre-trained model, revise model_without_ddp.load_state_dict(checkpoint['model']) with strict=False.
  2. Our ViT-Small is with heads=12 in the Transformer block, while by default in DeiT it is heads=6. Please modify the DeiT code accordingly when fine-tuning our ViT-Small model.

Model Configs

See the commands listed in CONFIG.md.

Transfer Learning

See the instruction in the transfer dir.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

@Article{chen2021mocov3,
  author  = {Xinlei Chen* and Saining Xie* and Kaiming He},
  title   = {An Empirical Study of Training Self-Supervised Vision Transformers},
  journal = {arXiv preprint arXiv:2104.02057},
  year    = {2021},
}
Owner
Facebook Research
Facebook Research
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022