Fully Convolutional DenseNets for semantic segmentation.

Overview

Introduction

This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. We investigate the use of Densely Connected Convolutional Networks for semantic segmentation, and report state of the art results on datasets such as CamVid.

Installation

You need to install :

Data

The data loader is now available here : https://github.com/fvisin/dataset_loaders Thanks a lot to Francesco Visin, please cite if you use his data loader. Some adaptations may be do on the actual code, I hope to find some time to modify it !


The data-loader we used for the experiments will be released later. If you do want to train models now, you need to create a function load_data which returns 3 iterators (for training, validation and test). When applying next(), the iterator returns two values X, Y where X is the batch of input images (shape= (batch_size, 3, n_rows, n_cols), dtype=float32) and Y the batch of target segmentation maps (shape=(batch_size, n_rows, n_cols), dtype=int32) where each pixel in Y is an int indicating the class of the pixel.

The iterator must also have the following methods (so they are not python iterators) : get_n_classes (returns the number of classes), get_n_samples (returns the number of examples in the set), get_n_batches (returns the number of batches necessary to see the entire set) and get_void_labels (returns a list containing the classes associated to void). It might be easier to change directly the files train.py and test.py.

Run experiments

The architecture of the model is defined in FC-DenseNet.py. To train a model, you need to prepare a configuration file (folder config) where all the parameters needed for creating and training your model are precised. DenseNets contain lot of connections making graph optimization difficult for Theano. We strongly recommend to use the flags described further.

To train the FC-DenseNet103 model, use the command : THEANO_FLAGS='device=cuda,optimizer=fast_compile,optimizer_including=fusion' python train.py -c config/FC-DenseNet103.py -e experiment_name. All the logs of the experiments are stored in the folder experiment_name.

On a Titan X 12GB, for the model FC-DenseNet103 (see folder config), compilation takes around 400 sec and 1 epoch 120 sec for training and 40 sec for validation.

Use a pretrained model

We publish the weights of our model FC-DenseNet103. Metrics claimed in the paper (jaccard and accuracy) can be verified running THEANO_FLAGS='device=cuda,optimizer=fast_compile,optimizer_including=fusion' python test.py

About the "m" number in the paper

There is a small error with the "m" number in the Table 2 of the paper (that you may understand when running the code!). All values from the bottleneck to the last block (880, 1072, 800 and 368) should be incremented by 16 (896, 1088, 816 and 384).

Here how we compute this value representing the number of feature maps concatenated into the "stack" :

  • First convolution : m=48
  • In the downsampling part + bottleneck, m[B] = m[B-1] + n_layers[B] * growth_rate [linear growth]. First block : m = 48 + 4x16 = 112. Second block m = 112 + 5x16 = 192. Until the bottleneck : m = 656 + 15x16 = 896.
  • In the upsampling part, m[B] is the sum of 3 terms : the m value corresponding to same resolution in the downsampling part (skip connection), the number of feature maps from the upsampled block (n_layers[B-1] * growth_rate) and the number of feature maps in the new block (n_layers[B] * growth_rate). First upsampling, m = 656 + 15x16 + 12x16 = 1088. Second upsampling, m = 464 + 12x16 + 10x16 = 816. Third upsampling, m = 304 + 10x16 + 7x16 = 576, Fourth upsampling, m = 192 + 7x16 + 5x16 = 384 and fifth upsampling, m = 112 + 5x16 + 4x16 = 256
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022