AdaDM: Enabling Normalization for Image Super-Resolution

Related tags

Deep LearningAdaDM
Overview

AdaDM

AdaDM: Enabling Normalization for Image Super-Resolution.

You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN*/NLSN*) can be downloaded from Google Drive or BaiduYun. The password for BaiduYun is kymj.

📢 If you use BasicSR framework, you need to turn off the Exponential Moving Average (EMA) option when applying BN in the generator network (e.g., RRDBNet). You can disable EMA by setting ema_decay=0 in corresponding .yml configuration file.

Model Scale File name (.pt) Urban100 Manga109
EDSR 2 32.93 39.10
3 28.80 34.17
4 26.64 31.02
EDSR* 2 EDSR_AdaDM_DIV2K_X2 33.12 39.31
3 EDSR_AdaDM_DIV2K_X3 29.02 34.48
4 EDSR_AdaDM_DIV2K_X4 26.83 31.24
RDN 2 32.89 39.18
3 28.80 34.13
4 26.61 31.00
RDN* 2 RDN_AdaDM_DIV2K_X2 33.03 39.18
3 RDN_AdaDM_DIV2K_X3 28.95 34.29
4 RDN_AdaDM_DIV2K_X4 26.72 31.18
NLSN 2 33.42 39.59
3 29.25 34.57
4 26.96 31.27
NLSN* 2 NLSN_AdaDM_DIV2K_X2 33.59 39.67
3 NLSN_AdaDM_DIV2K_X3 29.53 34.95
4 NLSN_AdaDM_DIV2K_X4 27.24 31.73

Preparation

Please refer to EDSR for instructions on dataset download and software installation, then clone our repository as follows:

git clone https://github.com/njulj/AdaDM.git

Training

cd AdaDM/src
bash train.sh

Example training command in train.sh looks like:

CUDA_VISIBLE_DEVICES=$GPU_ID python3 main.py --template EDSR_paper --scale 2\
        --n_GPUs 1 --batch_size 16 --patch_size 96 --rgb_range 255 --res_scale 0.1\
        --save EDSR_AdaDM_Test_DIV2K_X2 --dir_data ../dataset --data_test Urban100\
        --epochs 1000 --decay 200-400-600-800 --lr 1e-4 --save_models --save_results 

Here, $GPU_ID specifies the GPU id used for training. EDSR_AdaDM_Test_DIV2K_X2 is the directory where all files are saved during training. --dir_data specifies the root directory for all datasets, you should place the DIV2K and benchmark (e.g., Urban100) datasets under this directory.

Testing

cd AdaDM/src
bash test.sh

Example testing command in test.sh looks like:

CUDA_VISIBLE_DEVICES=$GPU_ID python3 main.py --template EDSR_paper --scale $SCALE\
        --pre_train ../experiment/test/model/EDSR_AdaDM_DIV2K_X$SCALE.pt\
        --dir_data ../dataset --n_GPUs 1 --test_only --data_test $TEST_DATASET

Here, $GPU_ID specifies the GPU id used for testing. $SCALE indicates the upscaling factor (e.g., 2, 3, 4). --pre_train specifies the path of saved checkpoints. $TEST_DATASET indicates the dataset to be tested.

Acknowledgement

This repository is built on EDSR and NLSN. We thank the authors for sharing their codes.

A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022