Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

Overview

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning

The predictive learning of spatiotemporal sequences aims to generate future images by learning from the historical context, where the visual dynamics are believed to have modular structures that can be learned with compositional subsystems.

First version at NeurIPS 2017

This repo first contains a PyTorch implementation of PredRNN (2017) [paper], a recurrent network with a pair of memory cells that operate in nearly independent transition manners, and finally form unified representations of the complex environment.

Concretely, besides the original memory cell of LSTM, this network is featured by a zigzag memory flow that propagates in both bottom-up and top-down directions across all layers, enabling the learned visual dynamics at different levels of RNNs to communicate.

New in PredRNN-V2 (2021)

This repo also includes the implementation of PredRNN-V2 (2021) [paper], which improves PredRNN in the following two aspects.

1. Memory Decoupling

We find that the pair of memory cells in PredRNN contain undesirable, redundant features, and thus present a memory decoupling loss to encourage them to learn modular structures of visual dynamics.

decouple

2. Reverse Scheduled Sampling

Reverse scheduled sampling is a new curriculum learning strategy for seq-to-seq RNNs. As opposed to scheduled sampling, it gradually changes the training process of the PredRNN encoder from using the previously generated frame to using the previous ground truth. Benefits: (1) It makes the training converge quickly by reducing the encoder-forecaster training gap. (2) It enforces the model to learn more from long-term input context.

rss

Evaluation in LPIPS

LPIPS is more sensitive to perceptual human judgments, the lower the better.

Moving MNIST KTH action
PredRNN 0.109 0.204
PredRNN-V2 0.071 0.139

Prediction examples

mnist

kth

radar

Get Started

  1. Install Python 3.7, PyTorch 1.3, and OpenCV 3.4.
  2. Download data. This repo contains code for two datasets: the Moving Mnist dataset and the KTH action dataset.
  3. Train the model. You can use the following bash script to train the model. The learned model will be saved in the --save_dir folder. The generated future frames will be saved in the --gen_frm_dir folder.
  4. You can get pretrained models from here.
cd mnist_script/
sh predrnn_mnist_train.sh
sh predrnn_v2_mnist_train.sh

cd kth_script/
sh predrnn_kth_train.sh
sh predrnn_v2_kth_train.sh

Citation

If you find this repo useful, please cite the following papers.

@inproceedings{wang2017predrnn,
  title={{PredRNN}: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal {LSTM}s},
  author={Wang, Yunbo and Long, Mingsheng and Wang, Jianmin and Gao, Zhifeng and Yu, Philip S},
  booktitle={Advances in Neural Information Processing Systems},
  pages={879--888},
  year={2017}
}

@misc{wang2021predrnn,
      title={{PredRNN}: A Recurrent Neural Network for Spatiotemporal Predictive Learning}, 
      author={Wang, Yunbo and Wu, Haixu and Zhang, Jianjin and Gao, Zhifeng and Wang, Jianmin and Yu, Philip S and Long, Mingsheng},
      year={2021},
      eprint={2103.09504},
      archivePrefix={arXiv},
}
Owner
THUML: Machine Learning Group @ THSS
Machine Learning Group, School of Software, Tsinghua University
THUML: Machine Learning Group @ THSS
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022