Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Overview

Hire-Wave-MLP.pytorch

Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP

Results and Models

Hire-MLP on ImageNet-1K Classification

Model Parameters FLOPs Top 1 Acc. Log Ckpt
Hire-MLP-Tiny 18M 2.1G 79.7% github github
Hire-MLP-Small 33M 4.2G 82.1% github github
Hire-MLP-Base 58M 8.1G 83.2% github github
Hire-MLP-Large 96M 13.4G 83.8%

Usage

Install

  • PyTorch (1.7.0)
  • torchvision (0.8.1)
  • timm (0.3.2)
  • torchprofile
  • mmcv (v1.3.0)
  • mmdetection (v2.11)
  • mmsegmentation (v0.11)

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is:

│path/to/imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Training

Training Hire-MLP

To train Hire-MLP-Tiny on ImageNet-1K on a single node with 8 gpus:

python -m torch.distributed.launch --nproc_per_node=8 train.py --data-path /your_path_to/imagenet/ --output_dir /your_path_to/output/ --model hire_mlp_tiny --batch-size 256 --apex-amp --input-size 224 --drop-path 0.0 --epochs 300 --test_freq 50 --test_epoch 260 --warmup-epochs 20 --warmup-lr 1e-6 --no-model-ema

To train Hire-MLP-Base on ImageNet-1K on a single node with 8 gpus:

python -m torch.distributed.launch --nproc_per_node=8 train.py --data-path /your_path_to/imagenet/ --output_dir /your_path_to/output/ --model hire_mlp_base --batch-size 128 --apex-amp --input-size 224 --drop-path 0.2 --epochs 300 --test_freq 50 --test_epoch 260 --warmup-epochs 20 --warmup-lr 1e-6 --no-model-ema

Training Wave-MLP

On a single node with 8 gpus, you can train the Wave-MLP family on ImageNet-1K as follows :

WaveMLP_T_dw:

python -m torch.distributed.launch --nproc_per_node 8 --nnodes=1 --node_rank=0 train_wave.py /your_path_to/imagenet/ --output /your_path_to/output/ --model WaveMLP_T_dw --sched cosine --epochs 300 --opt adamw -j 8 --warmup-lr 1e-6 --mixup .8 --cutmix 1.0 --model-ema --model-ema-decay 0.99996 --aa rand-m9-mstd0.5-inc1 --color-jitter 0.4 --warmup-epochs 5 --opt-eps 1e-8 --repeated-aug --remode pixel --reprob 0.25 --amp --lr 1e-3 --weight-decay .05 --drop 0 --drop-path 0.1 -b 128

WaveMLP_T:

python -m torch.distributed.launch --nproc_per_node 8 --nnodes=1 --node_rank=0 train_wave.py /your_path_to/imagenet/ --output /your_path_to/output/ --model WaveMLP_T --sched cosine --epochs 300 --opt adamw -j 8 --warmup-lr 1e-6 --mixup .8 --cutmix 1.0 --model-ema --model-ema-decay 0.99996 --aa rand-m9-mstd0.5-inc1 --color-jitter 0.4 --warmup-epochs 5 --opt-eps 1e-8 --repeated-aug --remode pixel --reprob 0.25 --amp --lr 1e-3 --weight-decay .05 --drop 0 --drop-path 0.1 -b 128

WaveMLP_S:

python -m torch.distributed.launch --nproc_per_node 8 --nnodes=1 --node_rank=0 train_wave.py /your_path_to/imagenet/ --output /your_path_to/output/ --model WaveMLP_S --sched cosine --epochs 300 --opt adamw -j 8 --warmup-lr 1e-6 --mixup .8 --cutmix 1.0 --model-ema --model-ema-decay 0.99996 --aa rand-m9-mstd0.5-inc1 --color-jitter 0.4 --warmup-epochs 5 --opt-eps 1e-8 --repeated-aug --remode pixel --reprob 0.25 --amp --lr 1e-3 --weight-decay .05 --drop 0 --drop-path 0.1 -b 128

WaveMLP_M:

python -m torch.distributed.launch --nproc_per_node 8 --nnodes=1 --node_rank=0 train_wave.py /your_path_to/imagenet/ --output /your_path_to/output/ --model WaveMLP_M --sched cosine --epochs 300 --opt adamw -j 8 --warmup-lr 1e-6 --mixup .8 --cutmix 1.0 --model-ema --model-ema-decay 0.99996 --aa rand-m9-mstd0.5-inc1 --color-jitter 0.4 --warmup-epochs 5 --opt-eps 1e-8 --repeated-aug --remode pixel --reprob 0.25 --amp --lr 1e-3 --weight-decay .05 --drop 0 --drop-path 0.1 -b 128

Evaluation

To evaluate a pre-trained Hire-MLP-Tiny on ImageNet validation set with a single GPU:

python -m torch.distributed.launch --nproc_per_node=1 train.py --data-path /your_path_to/imagenet/ --output_dir /your_path_to/output/ --batch-size 256 --input-size 224 --model hire_mlp_tiny --apex-amp --no-model-ema --resume /your_path_to/hire_mlp_tiny.pth --eval

Acknowledgement

This repo is based on DeiT, pytorch-image-models, MMDetection, MMSegmentation, Swin Transformer, CycleMLP and AS-MLP.

Citation

If you find this project useful in your research, please consider cite:

@article{guo2021hire,
  title={Hire-mlp: Vision mlp via hierarchical rearrangement},
  author={Guo, Jianyuan and Tang, Yehui and Han, Kai and Chen, Xinghao and Wu, Han and Xu, Chao and Xu, Chang and Wang, Yunhe},
  journal={arXiv preprint arXiv:2108.13341},
  year={2021}
}
@article{tang2021image,
  title={An Image Patch is a Wave: Phase-Aware Vision MLP},
  author={Tang, Yehui and Han, Kai and Guo, Jianyuan and Xu, Chang and Li, Yanxi and Xu, Chao and Wang, Yunhe},
  journal={arXiv preprint arXiv:2111.12294},
  year={2021}
}

License

License: MIT

You might also like...
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surface-emitting lasers, nano-antennas, and more.

Comments
  • Difference of PATM between code and paper

    Difference of PATM between code and paper

    In Section 3.2 of the paper, the authors say that "The final output of the block is the summation of these three branches." However, it seems that there are extra reweight and projection after the summation. Maybe this design is from CycleMLP, but not mentioned in the paper, which may cause confusion.

    opened by sbl1996 1
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
Owner
Nevermore
Nevermore
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022