Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

Related tags

Deep Learningrascanet
Overview

RaScaNet: Learning Tiny Models by Raster-Scanning Images

Deploying deep convolutional neural networks on ultra-low power systems is challenging, because the systems put a hard limit on the size of on-chip memory. To overcome this drawback, we propose a novel Raster-Scanning Network, named RaScaNet, inspired by raster-scanning in image sensors.

RaScaNet reads only a few rows of pixels at a time using a convolutional neural network and then sequentially learns the representation of the whole image using a recurrent neural network. The proposed method requires 15.9-24.3x smaller peak memory and 5.3-12.9x smaller weight memory than the state-of-the-art tiny models. The total memory usage of RaScaNet does not exceed 60 KB, in the VWW dataset with competitive accuracy.

Requirements

  • python 3.6
  • torch 1.7.0
  • torchvision 0.8.1
  • pycocotools 2.0.1
  • numpy 0.19.0
  • VWW dataset

Usage

For running the model, (only support vww dataset)

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar

With early termination,

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar --early_terminate=1
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar --early_terminate=1

Currently, we do not provide the code for training.

Result

Model Weight Memory Peak Memory OPs Cnt. Accuracy
rascanet(210x240) 47.03 KB 7.92 KB 56.34 M 91.835%
rascanet(105x120) 31.77 KB 3.60 KB 9.71 M 88.100%

Citation

@InProceedings{Yoo_2021_CVPR,
    author    = {Yoo, Jaehyoung and Lee, Dongwook and Son, Changyong and Jung, Sangil and Yoo, ByungIn and Choi, Changkyu and Han, Jae-Joon and Han, Bohyung},
    title     = {RaScaNet: Learning Tiny Models by Raster-Scanning Images},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13673-13682}
}

License

Copyright (C) 2021 Samsung Electronics Co. LTD

This software is a property of Samsung Electronics.
No part of this software, either material or conceptual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means,
electronic, mechanical, manual or otherwise, or disclosed
to third parties without the express written permission of Samsung Electronics.
(Use of the Software is restricted to non-commercial, personal or academic, research purpose only)
Owner
SAIT (Samsung Advanced Institute of Technology)
SAIT (Samsung Advanced Institute of Technology)
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022