Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

Related tags

Deep Learningrascanet
Overview

RaScaNet: Learning Tiny Models by Raster-Scanning Images

Deploying deep convolutional neural networks on ultra-low power systems is challenging, because the systems put a hard limit on the size of on-chip memory. To overcome this drawback, we propose a novel Raster-Scanning Network, named RaScaNet, inspired by raster-scanning in image sensors.

RaScaNet reads only a few rows of pixels at a time using a convolutional neural network and then sequentially learns the representation of the whole image using a recurrent neural network. The proposed method requires 15.9-24.3x smaller peak memory and 5.3-12.9x smaller weight memory than the state-of-the-art tiny models. The total memory usage of RaScaNet does not exceed 60 KB, in the VWW dataset with competitive accuracy.

Requirements

  • python 3.6
  • torch 1.7.0
  • torchvision 0.8.1
  • pycocotools 2.0.1
  • numpy 0.19.0
  • VWW dataset

Usage

For running the model, (only support vww dataset)

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar

With early termination,

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar --early_terminate=1
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar --early_terminate=1

Currently, we do not provide the code for training.

Result

Model Weight Memory Peak Memory OPs Cnt. Accuracy
rascanet(210x240) 47.03 KB 7.92 KB 56.34 M 91.835%
rascanet(105x120) 31.77 KB 3.60 KB 9.71 M 88.100%

Citation

@InProceedings{Yoo_2021_CVPR,
    author    = {Yoo, Jaehyoung and Lee, Dongwook and Son, Changyong and Jung, Sangil and Yoo, ByungIn and Choi, Changkyu and Han, Jae-Joon and Han, Bohyung},
    title     = {RaScaNet: Learning Tiny Models by Raster-Scanning Images},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13673-13682}
}

License

Copyright (C) 2021 Samsung Electronics Co. LTD

This software is a property of Samsung Electronics.
No part of this software, either material or conceptual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means,
electronic, mechanical, manual or otherwise, or disclosed
to third parties without the express written permission of Samsung Electronics.
(Use of the Software is restricted to non-commercial, personal or academic, research purpose only)
Owner
SAIT (Samsung Advanced Institute of Technology)
SAIT (Samsung Advanced Institute of Technology)
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023