Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

Related tags

Deep Learningrascanet
Overview

RaScaNet: Learning Tiny Models by Raster-Scanning Images

Deploying deep convolutional neural networks on ultra-low power systems is challenging, because the systems put a hard limit on the size of on-chip memory. To overcome this drawback, we propose a novel Raster-Scanning Network, named RaScaNet, inspired by raster-scanning in image sensors.

RaScaNet reads only a few rows of pixels at a time using a convolutional neural network and then sequentially learns the representation of the whole image using a recurrent neural network. The proposed method requires 15.9-24.3x smaller peak memory and 5.3-12.9x smaller weight memory than the state-of-the-art tiny models. The total memory usage of RaScaNet does not exceed 60 KB, in the VWW dataset with competitive accuracy.

Requirements

  • python 3.6
  • torch 1.7.0
  • torchvision 0.8.1
  • pycocotools 2.0.1
  • numpy 0.19.0
  • VWW dataset

Usage

For running the model, (only support vww dataset)

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar

With early termination,

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar --early_terminate=1
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar --early_terminate=1

Currently, we do not provide the code for training.

Result

Model Weight Memory Peak Memory OPs Cnt. Accuracy
rascanet(210x240) 47.03 KB 7.92 KB 56.34 M 91.835%
rascanet(105x120) 31.77 KB 3.60 KB 9.71 M 88.100%

Citation

@InProceedings{Yoo_2021_CVPR,
    author    = {Yoo, Jaehyoung and Lee, Dongwook and Son, Changyong and Jung, Sangil and Yoo, ByungIn and Choi, Changkyu and Han, Jae-Joon and Han, Bohyung},
    title     = {RaScaNet: Learning Tiny Models by Raster-Scanning Images},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13673-13682}
}

License

Copyright (C) 2021 Samsung Electronics Co. LTD

This software is a property of Samsung Electronics.
No part of this software, either material or conceptual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means,
electronic, mechanical, manual or otherwise, or disclosed
to third parties without the express written permission of Samsung Electronics.
(Use of the Software is restricted to non-commercial, personal or academic, research purpose only)
Owner
SAIT (Samsung Advanced Institute of Technology)
SAIT (Samsung Advanced Institute of Technology)
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022