Research on Tabular Deep Learning (Python package & papers)

Overview

Research on Tabular Deep Learning

For paper implementations, see the section "Papers and projects".

rtdl is a PyTorch-based package providing a user-friendly API for the main models and concepts from our papers. See the documentation.

Press "Watch" to stay up to date with new papers and releases!

Feel free to report issues and post questions/feedback/ideas.

Papers and projects

Name Location Comment
On Embeddings for Numerical Features in Tabular Deep Learning link arXiv 2022
Revisiting Deep Learning Models for Tabular Data link NeurIPS 2021
rtdl link Python package
Comments
  • Fix MLP.make_baseline() return type

    Fix MLP.make_baseline() return type

    Return object of type cls, not MLP, in MLP.make_baseline(). Otherwise, child classes inheriting from MLP constructed using the .make_baseline() method always have type MLP (instead of the type of the child class).

    opened by jpgard 6
  • Is it possible to provide a scikit-learn interface?

    Is it possible to provide a scikit-learn interface?

    This project is interesting and I want to use it as the baseline algorithm for my paper. However, it seems that I need to take several steps in order to make a prediction. Consequently, is it possible to provide a scikit-learn interface for making a convenient comparison between different algorithms?

    opened by hengzhe-zhang 5
  • Cannot link in the document of zero

    Cannot link in the document of zero

    Hi! I am trying to understand the usage of python package zero, which is used in the example of rtdl. But I found that the linkage in the comment line of the code is not available anymore.

    Here is the invalid link: https://yura52.github.io/zero/0.0.4/reference/api/zero.improve_reproducibility.html

    I am wondering is there any other document? Thank you!

    Regards.

    opened by WuZheng326 4
  • embedding of categorical variables

    embedding of categorical variables

    Hi Yury,

    Thank you for your excellent work. I get a problem when handling categorical features. Do I need to pre-train the embedding layer when applying it to the data processing or just to attach the embedding layer to the model and train it with the model.

    opened by lhq12 3
  • Add ⭐️Weights & Biases⭐️ Logging

    Add ⭐️Weights & Biases⭐️ Logging

    This PR aims to add basic Weights and Biases Metric Logging by appending to the existing codebase with minimal changes while supporting Checkpoint uploads as Weights and Biases Artifacts.

    Wherever needed, I have used the existing Weights and Biases integrations viz. LightGBM and XGBoost.

    I have validated the performance of all the proposed runs by running 150+ runs, which can be viewed on this project page and in detail in an accompanying blog post.

    opened by SauravMaheshkar 3
  • Bugs in piecewise-linear encoding

    Bugs in piecewise-linear encoding

    1. Here, indices = as_tensor(values) must be changed to this:
    indices = as_tensor(indices)
    
    1. Here, np.array(d_encoding) must be changed to this:
    torch.tensor(d_encoding).to(indices)
    
    1. Here, the argument dtype=X.dtype is missing for np.array

    2. Here, .to(X) is missing

    3. Here, it must be:

    is_last_bin = bin_indices + 1 == as_tensor(list(map(len, bin_edges)))
    
    opened by Yura52 2
  • LGBMRegressor on California Housing dataset is 0.68 >> 0.46

    LGBMRegressor on California Housing dataset is 0.68 >> 0.46

    I use the sample code to prepare the dataset:

    device = 'cpu'
    dataset = sklearn.datasets.fetch_california_housing()
    task_type = 'regression'
    
    X_all = dataset['data'].astype('float32')
    y_all = dataset['target'].astype('float32')
    n_classes = None
    
    X = {}
    y = {}
    X['train'], X['test'], y['train'], y['test'] = sklearn.model_selection.train_test_split(
        X_all, y_all, train_size=0.8
    )
    X['train'], X['val'], y['train'], y['val'] = sklearn.model_selection.train_test_split(
        X['train'], y['train'], train_size=0.8
    )
    
    # not the best way to preprocess features, but enough for the demonstration
    preprocess = sklearn.preprocessing.StandardScaler().fit(X['train'])
    X = {
        k: torch.tensor(preprocess.fit_transform(v), device=device)
        for k, v in X.items()
    }
    y = {k: torch.tensor(v, device=device) for k, v in y.items()}
    
    # !!! CRUCIAL for neural networks when solving regression problems !!!
    y_mean = y['train'].mean().item()
    y_std = y['train'].std().item()
    y = {k: (v - y_mean) / y_std for k, v in y.items()}
    
    y = {k: v.float() for k, v in y.items()}
    

    And I train a LGBMRegressor with the default hyper parameters:

    model = lgb.LGBMRegressor()
    model.fit(X['train'], y['train'])
    

    But when I evaluate on the test fold, I found the performance is 0.68:

    >>> test_pred = model.predict(X['test'])
    >>> test_pred = torch.from_numpy(test_pred)
    >>> rmse = torch.nn.functional.mse_loss(
    >>>     test_pred.view(-1), y['test'].view(-1)) ** 0.5 * y_std
    >>> print(f'Test RMSE: {rmse:.2f}.')
    Test RMSE: 0.68.
    

    Even using the model from rtdl gives me 0.56 RMSE:

    (epoch) 57 (batch) 0 (loss) 0.1885
    (epoch) 57 (batch) 10 (loss) 0.1315
    (epoch) 57 (batch) 20 (loss) 0.1735
    (epoch) 57 (batch) 30 (loss) 0.1197
    (epoch) 57 (batch) 40 (loss) 0.1952
    (epoch) 57 (batch) 50 (loss) 0.1167
    Epoch 057 | Validation score: 0.7334 | Test score: 0.5612 <<< BEST VALIDATION EPOCH
    

    Is there anything I miss? How can I reproduce the performance in your paper? Thanks!

    opened by fingertap 2
  • Regression results about the RTDL models.

    Regression results about the RTDL models.

    Hi, you did a great implementation of the tab-transformer. However, when I use your example notebook to do the simple regression for the Sin(x), neither the baseline model or the FTTransformer give the good results. I have no idea about this and want to know why.

    Here is the link

    opened by linkedlist771 1
  • typos in CatEmbeddings

    typos in CatEmbeddings

    1. link. The variable cardinalities_and_dimensions does not exist
    2. link. The condition looks broken. Solution: simplify it and remove the word "spec" from the error message.
    opened by Yura52 0
  • Running error, prenormalization is not a class variable

    Running error, prenormalization is not a class variable

    The code crushes at this line, because prenormalization is not in self

    https://github.com/Yura52/rtdl/blob/b130dd2e596c17109bef825bc9c8608e1ae617cc/rtdl/nn/_backbones.py#L627

    opened by zahar-chikishev 0
  • Typos?

    Typos?

    Hello,

    I am trying to use PiecewiseLinearEncoder(). I think I found a few typos. Please check my work.

    I first ran into an issue in piecewise_linear_encoding where I got the error in line 618 saying "RuntimeError: The size of tensor a (3688) must match the size of tensor b (32) at non-singleton dimension 1"

    I dug into the code and found that when PiecewiseLinearEncoder was calling piecewise_linear_encoding the positional arguments of indices and ratios were switched in the former from what was expected in the latter.

    Additionally, when inspecting piecewise_linear_encoding it looks like bin_edges = as_tensor(bin_ratios) not "as_tensor(bin_edges)" which would make more sense.

    Can you please check this out? Much appreciated.

    opened by jdefriel 1
  • How to resume training?

    How to resume training?

    I ran your model in colab for a few hours before google terminated it. I used pickle.dump/load to store the trained model. It works to make predictions but it doesn't seem to be able to resume training.

          if progress.success:
              print(' <<< BEST VALIDATION EPOCH', end='')
              with open(mydrive+jobname, 'wb') as filehandler:
                dump((model, y_std, y_mean),filehandler)
                #we could see result was improving
    
            with open(mydrive+jobname, 'rb') as filehandler:
              model, y_std, y_mean = load(filehandler)
            pred=model(batch,None) #this seems to work
            for epoch in range(1, n_epochs + 1):
                for iteration, batch_idx in enumerate(train_loader):
                    model.train()
                    optimizer.zero_grad()
                    x_batch = X['train'][batch_idx]
                    y_batch = y['train'][batch_idx]
                    loss = loss_fn(apply_model(x_batch).squeeze(1), y_batch)
                    loss.backward()
                    optimizer.step()
                    if iteration % report_frequency == 0:
                        print(f'(epoch) {epoch} (batch) {iteration} (loss) {loss.item():.4f}')
                    #no improvement any more. even the model was dumped immediately after created.
    

    what is the right way to store the model so that I can resume the training?

    opened by jerronl 0
  • A scikit-learn interface for RTDL package.

    A scikit-learn interface for RTDL package.

    Hello! I have written a scikit-learn interface for the RTDL package (https://github.com/hengzhe-zhang/scikit-rtdl). I rely on the skorch to avoid coding errors, and set the default parameters based on the parameters presented in your paper. Hoping you will like it!

    opened by hengzhe-zhang 1
Releases(v0.0.13)
  • v0.0.13(Mar 16, 2022)

  • v0.0.12(Mar 10, 2022)

  • v0.0.10(Feb 28, 2022)

  • v0.0.9(Nov 7, 2021)

    This is a hot-fix release after the big 0.0.8 release (see the release notes for 0.0.8):

    • revert the breaking change in NumericalFeatureTokenizer accidentally introduced in 0.0.8
    • minor documentation refinements
    Source code(tar.gz)
    Source code(zip)
  • v0.0.8(Nov 6, 2021)

    This release focuses on improving the documentation.

    Documentation

    • The following models and classes are now documented:
      • MLP
      • ResNet
      • FTTransformer
      • MultiheadAttention
      • NumericalFeatureTokenizer
      • CategoricalFeatureTokenizer
      • FeatureTokenizer
      • CLSToken
    • Usability have been greatly improved:
      • signatures are now highlighted
      • added the "copy" button to code blocks
      • permalink buttons (signature anchors) are now visible

    Bug fixes

    • MultiheadAttention: fix the crash when bias=False

    Dependencies

    • numpy >= 1.18
    • torch >= 1.7

    Project

    • added spell checking for documentation
    • sphinx was updated to 4.2.0
    • flit was updated to 3.4.0
    Source code(tar.gz)
    Source code(zip)
  • v0.0.7(Oct 10, 2021)

  • v0.0.6(Aug 26, 2021)

    v0.0.6

    New features

    • CLSToken (old name: "AppendCLSToken"): add expand method for easy construction of batches of [CLS]-tokens

    Bug fixes

    • FTTransformer: the make_baseline method now properly constructs an instance

    API changes

    • FTTransformer: the ffn_d_intermidiate argument was renamed to a more conventional ffn_d_hidden
    • FTTransformer: the normalization argument was split into three arguments: attention_normalization, ffn_normalization, head_normalization
    • ResNet: the d_intermidiate argument was renamed to a more conventional d_hidden
    • AppendCLSToken: renamed to CLSToken

    Documentation improvements

    • CLSToken
    • MLP.make_baseline

    Project

    • add tests with CUDA
    • remove the .vscode directory from the repository
    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Jul 20, 2021)

    API Changes:

    • MLP.make_baseline is now more user-friendly and accepts a single d_layers argument instead of four (d_first, d_intermidiate, d_last, n_blocks)
    Source code(tar.gz)
    Source code(zip)
  • v0.0.4(Jul 11, 2021)

  • v0.0.3(Jul 2, 2021)

    API Changes

    • ResNet & ResNet.Block: the d parameter was renamed to d_main

    Fixes

    • minor fix in the comments in examples/rtdl.ipynb

    Project

    • add tests that validate that the models in rtdl are literally the same as in the implementation of the paper
    Source code(tar.gz)
    Source code(zip)
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022