EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

Overview

EntityQuestions

This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-centric Questions Challenge Dense Retrievers by Chris Sciavolino*, Zexuan Zhong*, Jinhyuk Lee, and Danqi Chen (* equal contribution).

[9/16/21] This repo is not yet set in stone, we're still putting finishing touches on the tooling and documentation :) Thanks for your patience!

Quick Links

Installation

You can download a .zip file of the dataset here, or using wget with the command:

$ wget https://nlp.cs.princeton.edu/projects/entity-questions/dataset.zip

We include the dependencies needed to run the code in this repository. We recommend having a separate miniconda environment for running DPR code. You can create the environment using the following commands:

$ conda create -n EntityQ python=3.6
$ conda activate EntityQ
$ pip install -r requirements.txt

Dataset Overview

The unzipped dataset directory should have the following structure:

dataset/
    | train/
        | P*.train.json     // all randomly sampled training files 
    | dev/
        | P*.dev.json       // all randomly sampled development files
    | test/
        | P*.test.json      // all randomly sampled testing files
    | one-off/
        | common-random-buckets/
            | P*/
                | bucket*.test.json
        | no-overlap/
            | P*/
                | P*_no_overlap.{train,dev,test}.json
        | nq-seen-buckets/
            | P*/
                bucket*.test.json
        | similar/
            | P*
                | P*_similar.{train,dev,test}.json

The main dataset is included in dataset/ under train/, dev/, and test/, each containing the randomly sampled training, development, and testing subsets, respectively. For example, the evaluation set for place-of-birth (P19) can be found in the dataset/test/P19.test.json file.

We also include all of the one-off datasets we used to generate the tables/figures presented in the paper under dataset/one-off/, explained below:

  • one-off/common-random-buckets/ contains buckets of 1,000 randomly sampled examples, used to produce Fig. 1 of the paper (specifically for rand-ent).
  • one-off/no-overlap/ contains the training/development splits for our analyses in Section 4.1 of the paper (we do not use the testing split in our analysis). These training/development sets have subject entities with no token overlap with subject entities of the randomly sampled test set (specifically for all fine-tuning in Table 2).
  • one-off/nq-seen-buckets/ contains buckets of questions with subject entities that overlap with subject entities seen in the NQ training set, used to produce Fig. 1 of the paper (specifically for train-ent).
  • one-off/similar contains the training/development splits for the syntactically different but symantically equal question sets, used for our analyses in Section 4.1 (specifically the similar rows). Again, we do not use the testing split in our analysis. These questions are identical to one-off/no-overlap/ but use a different question template.

Retrieving DPR Results

Our analysis is based on a previous version of the DPR repository (specifically the Oct. 5 version w. hash 27a8436b070861e2fff481e37244009b48c29c09), so our commands may not be up-to-date with the March 2021 release. That said, most of the commands should be clearly transferable.

First, we recommend following the setup guide from the official DPR repository. Once set up, you can download the relevant pre-trained models/indices using their download_data.py script. For our analysis, we used the DPR-NQ model and the DPR-Multi model. To run retrieval using a pre-trained model, you'll minimally need to download:

  1. The pre-trained model
  2. The Wikipedia passage splits
  3. The encoded Wikipedia passage FAISS index
  4. A question/answer dataset

With this, you can use the following python command:

python dense_retriever.py \
    --batch_size 512 \
    --model_file "path/to/pretrained/model/file.cp" \
    --qa_file "path/to/qa/dataset/to/evaluate.json" \
    --ctx_file "path/to/wikipedia/passage/splits.tsv" \
    --encoded_ctx_file "path/to/encoded/wikipedia/passage/index/" \
    --save_or_load_index \
    --n-docs 100 \
    --validation_workers 1 \
    --out_file "path/to/desired/output/location.json"

We had access to a single 11Gb Nvidia RTX 2080Ti GPU w. 128G of RAM when running DPR retrieval.

Retrieving BM25 Results

We use the Pyserini implementation of BM25 for our analysis. We use the default settings and index on the same passage splits downloaded from the DPR repository. We include steps to re-create our BM25 results below.

First, we need to pre-process the DPR passage splits into the proper format for BM25 indexing. We include this file in bm25/build_bm25_ctx_passages.py. Rather than writing all passages into a single file, you can optionally shard the passages into multiple files (specified by the n_shards argument). It also creates a mapping from the passage ID to the title of the article the passage is from. You can use this file as follows:

python bm25/build_bm25_ctx_passages.py \
    --wiki_passages_file "path/to/wikipedia/passage/splits.tsv" \
    --outdir "path/to/desired/output/directory/" \
    --title_index_path "path/to/desired/output/directory/.json" \
    --n_shards number_of_shards_of_passages_to_write

Now that you have all the passages in files, you can build the BM25 index using the following command:

python -m pyserini.index -collection JsonCollection \
    -generator DefaultLuceneDocumentGenerator \
    -threads 4 \
    -input "path/to/generated/passages/folder/" \
    -index "path/to/desired/index/folder/" \
    -storePositions -storeDocvectors -storeRaw

Once the index is built, you can use it in the bm25/bm25_retriever.py script to get retrieval results for an input file:

python bm25/bm25_retriever.py \
    --index_path "path/to/built/bm25/index/directory/" \
    --passage_id_to_title_path "path/to/title_index_path/from_step_1.json" \
    --input "path/to/input/qa/file.json" \
    --output_dir "path/to/output/directory/"

By default, the script will retrieve 100 passages (--n_docs), use string matching to determine answer presence (--answer_type), and take in .json files (--input_file_type). You can optionally provide a glob using the --glob flag. The script writes the results to the file with the same name as the input file, but in the output directory.

Evaluating Retriever Results

We provide an evaluation script in utils/accuracy.py. The expected format is equivalent to DPR's output format. It either accepts a single file to evaluate, or a glob of multiple files if the --glob option is set. To evaluate a single file, you can use the following command:

python utils/accuracy.py \
    --results "path/to/retrieval/results.json" \
    --k_values 1,5,20,100

or with a glob with:

python utils/accuracy.py \
    --results="path/to/glob*.test.json" \
    --glob \
    --k_values 1,5,20,100

Bugs or Questions?

Feel free to open an issue on this GitHub repository and we'd be happy to answer your questions as best we can!

Citation

If you use our dataset or code in your research, please cite our work:

@inproceedings{sciavolino2021simple,
   title={Simple Entity-centric Questions Challenge Dense Retrievers},
   author={Sciavolino, Christopher and Zhong, Zexuan and Lee, Jinhyuk and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022