A library for implementing Decentralized Graph Neural Network algorithms.

Overview

decentralized-gnn

A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. Developed code supports the publication p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks.

Quick Start

To generate a local instance of a decentralized learning device:

from decentralized.devices import GossipDevice
from decentralized.mergers import SlowMerge
from learning.nn import MLP
node = ... # a node identifier object (can be any object)
features = ... # feature vector, should have the same length for each device
labels = ... # one hot encoding of class labels, zeroes if no label is known
predictor = MLP(features.shape[0], labels.shape[0])  # or load a pretrained model with
device = GossipDevice(node, predictor, features, labels, gossip_merge=SlowMerge)

In this code, the type of the device (GossipDevice)and the variable merge protocol (SlowMerge) work together to define a decentralized learning seting for a Graph Neural Network that runs on and takes account of unstructured peer-to-peer links of uncertain availability.

Then, when possible (e.g. at worst, whenever devices send messages to the others for other reasons) perform the following information exchange scheme between linked devices u and v:

send = u.send()
receive = v.receive(u.name, send)
u.ack(v.name, receive)

🛠️ Simulations

Simulations on many devices automatically generated by existing datasets can be easily set up and run per the following code:

from decentralized.devices import GossipDevice
from decentralized.mergers import AvgMerge
from decentralized.simulation import create_network

dataset_name = ... # "cora", "citeseer" or "pubmed"
network, test_labels = create_network(dataset_name, 
                                      GossipDevice,
                                      pretrained=False,
                                      gossip_merge=AvgMerge,
                                      gossip_pull=False,
                                      seed=0)
for epoch in range(800):
    network.round()
    accuracy_base = sum(1. if network.devices[u].predict(False) == label else 0 for u, label in test_labels.items()) / len(test_labels)
    accuracy = sum(1. if network.devices[u].predict() == label else 0 for u, label in test_labels.items()) / len(test_labels)
    print(f"Epoch {epoch} \t Acc {accuracy:.3f} \t Base acc {accuracy_base:.3f}")

In the above code, datasets are automatically downloaded using DGL's interface. Then, devices are instantiated given desired setting preferences.

⚠️ Some merge schemes take up a lot of memory to simulate.

📓 Citation

TBD
Owner
Multimedia Knowledge and Social Analytics Lab
MKLab is part of the Information Technologies Institute.
Multimedia Knowledge and Social Analytics Lab
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023