General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

Overview

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021

Paper | Project Page

    

Outline

Dependencies

Testing with Trained Weights

Model Preparation

Download the models here:

  • pretrain_clean_line_drawings (105 MB): for vectorization
  • pretrain_rough_sketches (105 MB): for rough sketch simplification
  • pretrain_faces (105 MB): for photograph to line drawing

Then, place them in this file structure:

outputs/
    snapshot/
        pretrain_clean_line_drawings/
        pretrain_rough_sketches/
        pretrain_faces/

Usage

Choose the image in the sample_inputs/ directory, and run one of the following commands for each task. The results will be under outputs/sampling/.

python3 test_vectorization.py --input muten.png

python3 test_rough_sketch_simplification.py --input rocket.png

python3 test_photograph_to_line.py --input 1390.png

Note!!! Our approach starts drawing from a randomly selected initial position, so it outputs different results in every testing trial (some might be fine and some might not be good enough). It is recommended to do several trials to select the visually best result. The number of outputs can be defined by the --sample argument:

python3 test_vectorization.py --input muten.png --sample 10

python3 test_rough_sketch_simplification.py --input rocket.png --sample 10

python3 test_photograph_to_line.py --input 1390.png --sample 10

Reproducing Paper Figures: our results (download from here) are selected by doing a certain number of trials. Apparently, it is required to use the same initial drawing positions to reproduce our results.

Additional Tools

a) Visualization

Our vector output is stored in a npz package. Run the following command to obtain the rendered output and the drawing order. Results will be under the same directory of the npz file.

python3 tools/visualize_drawing.py --file path/to/the/result.npz 

b) GIF Making

To see the dynamic drawing procedure, run the following command to obtain the gif. Result will be under the same directory of the npz file.

python3 tools/gif_making.py --file path/to/the/result.npz 

c) Conversion to SVG

Our vector output in a npz package is stored as Eq.(1) in the main paper. Run the following command to convert it to the svg format. Result will be under the same directory of the npz file.

python3 tools/svg_conversion.py --file path/to/the/result.npz 
  • The conversion is implemented in two modes (by setting the --svg_type argument):
    • single (default): each stroke (a single segment) forms a path in the SVG file
    • cluster: each continuous curve (with multiple strokes) forms a path in the SVG file

Important Notes

In SVG format, all the segments on a path share the same stroke-width. While in our stroke design, strokes on a common curve have different widths. Inside a stroke (a single segment), the thickness also changes linearly from an endpoint to another. Therefore, neither of the two conversion methods above generate visually the same results as the ones in our paper. (Please mention this issue in your paper if you do qualitative comparisons with our results in SVG format.)


Training

Preparations

Download the models here:

  • pretrain_neural_renderer (40 MB): the pre-trained neural renderer
  • pretrain_perceptual_model (691 MB): the pre-trained perceptual model for raster loss

Download the datasets here:

  • QuickDraw-clean (14 MB): for clean line drawing vectorization. Taken from QuickDraw dataset.
  • QuickDraw-rough (361 MB): for rough sketch simplification. Synthesized by the pencil drawing generation method from Sketch Simplification.
  • CelebAMask-faces (370 MB): for photograph to line drawing. Processed from the CelebAMask-HQ dataset.

Then, place them in this file structure:

datasets/
    QuickDraw-clean/
    QuickDraw-rough/
    CelebAMask-faces/
outputs/
    snapshot/
        pretrain_neural_renderer/
        pretrain_perceptual_model/

Running

It is recommended to train with multi-GPU. We train each task with 2 GPUs (each with 11 GB).

python3 train_vectorization.py

python3 train_rough_photograph.py --data rough

python3 train_rough_photograph.py --data face

Citation

If you use the code and models please cite:

@article{mo2021virtualsketching,
  title   = {General Virtual Sketching Framework for Vector Line Art},
  author  = {Mo, Haoran and Simo-Serra, Edgar and Gao, Chengying and Zou, Changqing and Wang, Ruomei},
  journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2021)},
  year    = {2021},
  volume  = {40},
  number  = {4},
  pages   = {51:1--51:14}
}
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022