General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

Overview

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021

Paper | Project Page

    

Outline

Dependencies

Testing with Trained Weights

Model Preparation

Download the models here:

  • pretrain_clean_line_drawings (105 MB): for vectorization
  • pretrain_rough_sketches (105 MB): for rough sketch simplification
  • pretrain_faces (105 MB): for photograph to line drawing

Then, place them in this file structure:

outputs/
    snapshot/
        pretrain_clean_line_drawings/
        pretrain_rough_sketches/
        pretrain_faces/

Usage

Choose the image in the sample_inputs/ directory, and run one of the following commands for each task. The results will be under outputs/sampling/.

python3 test_vectorization.py --input muten.png

python3 test_rough_sketch_simplification.py --input rocket.png

python3 test_photograph_to_line.py --input 1390.png

Note!!! Our approach starts drawing from a randomly selected initial position, so it outputs different results in every testing trial (some might be fine and some might not be good enough). It is recommended to do several trials to select the visually best result. The number of outputs can be defined by the --sample argument:

python3 test_vectorization.py --input muten.png --sample 10

python3 test_rough_sketch_simplification.py --input rocket.png --sample 10

python3 test_photograph_to_line.py --input 1390.png --sample 10

Reproducing Paper Figures: our results (download from here) are selected by doing a certain number of trials. Apparently, it is required to use the same initial drawing positions to reproduce our results.

Additional Tools

a) Visualization

Our vector output is stored in a npz package. Run the following command to obtain the rendered output and the drawing order. Results will be under the same directory of the npz file.

python3 tools/visualize_drawing.py --file path/to/the/result.npz 

b) GIF Making

To see the dynamic drawing procedure, run the following command to obtain the gif. Result will be under the same directory of the npz file.

python3 tools/gif_making.py --file path/to/the/result.npz 

c) Conversion to SVG

Our vector output in a npz package is stored as Eq.(1) in the main paper. Run the following command to convert it to the svg format. Result will be under the same directory of the npz file.

python3 tools/svg_conversion.py --file path/to/the/result.npz 
  • The conversion is implemented in two modes (by setting the --svg_type argument):
    • single (default): each stroke (a single segment) forms a path in the SVG file
    • cluster: each continuous curve (with multiple strokes) forms a path in the SVG file

Important Notes

In SVG format, all the segments on a path share the same stroke-width. While in our stroke design, strokes on a common curve have different widths. Inside a stroke (a single segment), the thickness also changes linearly from an endpoint to another. Therefore, neither of the two conversion methods above generate visually the same results as the ones in our paper. (Please mention this issue in your paper if you do qualitative comparisons with our results in SVG format.)


Training

Preparations

Download the models here:

  • pretrain_neural_renderer (40 MB): the pre-trained neural renderer
  • pretrain_perceptual_model (691 MB): the pre-trained perceptual model for raster loss

Download the datasets here:

  • QuickDraw-clean (14 MB): for clean line drawing vectorization. Taken from QuickDraw dataset.
  • QuickDraw-rough (361 MB): for rough sketch simplification. Synthesized by the pencil drawing generation method from Sketch Simplification.
  • CelebAMask-faces (370 MB): for photograph to line drawing. Processed from the CelebAMask-HQ dataset.

Then, place them in this file structure:

datasets/
    QuickDraw-clean/
    QuickDraw-rough/
    CelebAMask-faces/
outputs/
    snapshot/
        pretrain_neural_renderer/
        pretrain_perceptual_model/

Running

It is recommended to train with multi-GPU. We train each task with 2 GPUs (each with 11 GB).

python3 train_vectorization.py

python3 train_rough_photograph.py --data rough

python3 train_rough_photograph.py --data face

Citation

If you use the code and models please cite:

@article{mo2021virtualsketching,
  title   = {General Virtual Sketching Framework for Vector Line Art},
  author  = {Mo, Haoran and Simo-Serra, Edgar and Gao, Chengying and Zou, Changqing and Wang, Ruomei},
  journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2021)},
  year    = {2021},
  volume  = {40},
  number  = {4},
  pages   = {51:1--51:14}
}
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022