🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Overview

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training

DOI DOI

Habitat is a tool that predicts a deep neural network's training iteration execution time on a given GPU. It currently supports PyTorch. To learn more about how Habitat works, please see our research paper.

Running From Source

Currently, the only way to run Habitat is to build it from source. You should use the Docker image provided in this repository to make sure that you can compile the code.

  1. Download the Habitat pre-trained models.
  2. Run extract-models.sh under analyzer to extract and install the pre-trained models.
  3. Run setup.sh under docker/ to build the Habitat container image.
  4. Run start.sh to start a new container. By default, your home directory will be mounted inside the container under ~/home.
  5. Once inside the container, run install-dev.sh under analyzer/ to build and install the Habitat package.
  6. In your scripts, import habitat to get access to Habitat. See experiments/run_experiment.py for an example showing how to use Habitat.

License

The code in this repository is licensed under the Apache 2.0 license (see LICENSE and NOTICE), with the exception of the files mentioned below.

This software contains source code provided by NVIDIA Corporation. These files are:

  • The code under cpp/external/cupti_profilerhost_util/ (CUPTI sample code)
  • cpp/src/cuda/cuda_occupancy.h

The code mentioned above is licensed under the NVIDIA Software Development Kit End User License Agreement.

We include the implementations of several deep neural networks under experiments/ for our evaluation. These implementations are copyrighted by their original authors and carry their original licenses. Please see the corresponding README files and license files inside the subdirectories for more information.

Research Paper

Habitat began as a research project in the EcoSystem Group at the University of Toronto. The accompanying research paper will appear in the proceedings of USENIX ATC'21. If you are interested, you can read a preprint of the paper here.

If you use Habitat in your research, please consider citing our paper:

@inproceedings{habitat-yu21,
  author = {Yu, Geoffrey X. and Gao, Yubo and Golikov, Pavel and Pekhimenko,
    Gennady},
  title = {{Habitat: A Runtime-Based Computational Performance Predictor for
    Deep Neural Network Training}},
  booktitle = {{Proceedings of the 2021 USENIX Annual Technical Conference
    (USENIX ATC'21)}},
  year = {2021},
}
Comments
  • I wonder what the meaning of varing kernel is.

    I wonder what the meaning of varing kernel is.

    Hi I am reading Habitat research paper.

    I wonder what the meaning of varing kernel is. I thought the GPU kernel is a collection of instructions that run in parallel, is that right?

    Can you give me an example of this phrase? 'some DNN operations are implemented using different GPU kernels on different GPUs '

    Thank you for taking the time to read.

    question 
    opened by Baek-sohyeon 6
  •  error: function cuptiProfilerBeginSession(&begin_session_params) failed with error CUPTI_ERROR_UNKNOWN

    error: function cuptiProfilerBeginSession(&begin_session_params) failed with error CUPTI_ERROR_UNKNOWN

    Hi @geoffxy,

    Great work here. I am quite interested in your project and try to reproduce from my side. Hower hit the error in the titel, I suspect that it may be caused by incompetible between CUPTI and NVIDIA driver version, I am wondering if could share you experiment setup here, mostly the host side, are you still using 18.04, what the nvidia driver version, did you use nvidia-docker2 or nvidia-container-runtime? what is your docker version?

    As mine, I am using 18.04 as host, driver 470.103.01, nvidia-docker2, docker 20.10.12.

    Thanks, Liang

    opened by liayan 3
  • How Habitat measures the execution time associated with the operation’s backward pass?

    How Habitat measures the execution time associated with the operation’s backward pass?

    Hi! Thanks for your perfect job.

    It's easy to understand to measure the execution time in the forward pass. But in the backward pass, how Habitat does? I think it is an undoubtedly different processor, right?

    @geoffxy Hope for your reply soon!

    question 
    opened by xiyiyia 2
  • Large Prediction Errors

    Large Prediction Errors

    Hi, I am reproducing the experiments in Habitat now. This is an interesting work and it's very convenient to run Habitat and process the results using the following two scripts.

    bash habitat/experiments/gather_raw_data.sh  <target_device>
    bash habitat/experiments/process_raw_data.sh
    

    Due to the limitation of GPU resources, I can not access all GPU models listed in the paper and only test it on V100, P100 and T4. But the prediction error is quite large, compared to that shown in the paper. You can check the results here.

    Basically, the setting I used follows habitat/docker/Dockerfile. Here are some of my experiment settings that may be different from yours:

    • CUDA driver version: 455.32.00,
    • I do not mount the user account on the host machine into the container

    So,

    1. Is there any hyper-parameter I need to tune to get a better prediction error ? 2.Can you share the cross-GPU prediction error between each pair of GPUs or just the output of habitat/experiments/process_raw_data.sh? Fig 3 in the paper only shows the results "averaged across all other “origin” GPUs".
    2. Will the setting differences listed above affect the prediction error ? Or any other possible reasons ?

    Thanks.

    question 
    opened by joapolarbear 2
  • CMake Error at CMakeLists.txt:22 (pybind11_add_module):

    CMake Error at CMakeLists.txt:22 (pybind11_add_module):

    when running "install-dev.sh", hit below error:

    CMake Error at CMakeLists.txt:22 (pybind11_add_module): Unknown CMake command "pybind11_add_module".

    -- Configuring incomplete, errors occurred!

    opened by liayan 1
  • CUPTI_ERROR_INSUFFICIENT_PRIVILEGES in container

    CUPTI_ERROR_INSUFFICIENT_PRIVILEGES in container

    The default configuration on my OS and current directions in README may lead to a CUPTI_ERROR_INSUFFICIENT_PRIVILEGES when using CUPTI inside the container.

    The example log is attached below:

    /home/ubuntu/home/habitat/cpp/src/cuda/cupti_tracer.cpp:120: error: function cuptiActivityRegisterCallbacks(cuptiBufferRequested, cuptiBufferCompleted) failed with error CUPTI_ERROR_INSUFFICIENT_PRIVILEGES.
    Traceback (most recent call last):
      File "run_experiment.py", line 246, in <module>
        main()
      File "run_experiment.py", line 238, in main
        run_dcgan_experiments(context)
      File "run_experiment.py", line 155, in run_dcgan_experiments
        context,
      File "run_experiment.py", line 85, in run_experiment_config
        threshold = compute_threshold(runnable, context)
      File "run_experiment.py", line 66, in compute_threshold
        runnable()
      File "run_experiment.py", line 150, in runnable
        iteration(*inputs)
      File "/home/ubuntu/home/habitat/experiments/dcgan/entry_point.py", line 41, in iteration
        netD.zero_grad()
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 1098, in zero_grad
        p.grad.detach_()
      File "/home/ubuntu/home/habitat/analyzer/habitat/tracking/operation.py", line 62, in hook
        kwargs,
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/operation.py", line 45, in measure_operation
        record_kernels,
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/operation.py", line 164, in _to_run_time_measurement
        if record_kernels else []
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/kernel.py", line 34, in measure_kernels
        self._measure_kernels_raw(runnable, fname)
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/kernel.py", line 48, in _measure_kernels_raw
        time_kernels = hc.profile(runnable)
    RuntimeError: CUPTI_ERROR_INSUFFICIENT_PRIVILEGES
    

    My solution: Adding options nvidia "NVreg_RestrictProfilingToAdminUsers=0" to /etc/modprobe.d/nvidia-kernel-common.conf and reboot.

    Ref:

    • https://developer.nvidia.com/nvidia-development-tools-solutions-err_nvgpuctrperm-permission-issue-performance-counters
    • https://github.com/tensorflow/tensorflow/issues/35860#issuecomment-585436324
    opened by yzs981130 1
  • Fail to build the image

    Fail to build the image

    Hi, I am following the steps here to reproduce habitat. When running setup.sh to build the image, the following error occurs

    Step 14/19 : RUN gpg --keyserver ha.pool.sks-keyservers.net --recv-keys B42F6819007F00F88E364FD4036A9C25BF357DD4
    ---> Running in d42ae3b13a05
    gpg: WARNING: unsafe permissions on homedir '/root/.gnupg'
    gpg: keybox '/root/.gnupg/pubring.kbx' created
    gpg: keyserver receive failed: No name
    The command '/bin/sh -c gpg --keyserver ha.pool.sks-keyservers.net --recv-keys B42F6819007F00F88E364FD4036A9C25BF357DD4' returned a non-zero code: 2
    

    Does it mean the keyserver ha.pool.sks-keyservers.net is not accessible now?

    I wonder whether it is necessary to duplicate the user account on the host machine into the container. With a root account in the container, I can access everything mounted from the host machine. What problem does it cause?

    Looking forward to your reply. Thanks.

    opened by joapolarbear 1
  • Fix format specifier for size_t

    Fix format specifier for size_t

    https://stackoverflow.com/questions/2524611/how-can-one-print-a-size-t-variable-portably-using-the-printf-family

    Signed-off-by: Kiruya Momochi [email protected]

    opened by KiruyaMomochi 0
  • Broken pillow for torchvision in Dockerfile causes docker build failed

    Broken pillow for torchvision in Dockerfile causes docker build failed

    Currently, pip3 install torchvision==0.5.0 should fail due to the broken dependency of pillow, shown in the following CI building process:

    https://github.com/yzs-lab/habitat/runs/4311964953?check_suite_focus=true#step:3:915

    Corresponding logs are attached below:

    The headers or library files could not be found for zlib,
        a required dependency when compiling Pillow from source.
        
        Please see the install instructions at:
           https://pillow.readthedocs.io/en/latest/installation.html
        
        Traceback (most recent call last):
          File "/tmp/pip-build-c0iq5ua_/pillow/setup.py", line 1024, in <module>
            zip_safe=not (debug_build() or PLATFORM_MINGW),
          File "/usr/lib/python3/dist-packages/setuptools/__init__.py", line 129, in setup
            return distutils.core.setup(**attrs)
          File "/usr/lib/python3.6/distutils/core.py", line 148, in setup
            dist.run_commands()
          File "/usr/lib/python3.6/distutils/dist.py", line 955, in run_commands
            self.run_command(cmd)
          File "/usr/lib/python3.6/distutils/dist.py", line 974, in run_command
            cmd_obj.run()
          File "/usr/lib/python3/dist-packages/setuptools/command/install.py", line 61, in run
            return orig.install.run(self)
          File "/usr/lib/python3.6/distutils/command/install.py", line 589, in run
            self.run_command('build')
          File "/usr/lib/python3.6/distutils/cmd.py", line 313, in run_command
            self.distribution.run_command(command)
          File "/usr/lib/python3.6/distutils/dist.py", line 974, in run_command
            cmd_obj.run()
          File "/usr/lib/python3.6/distutils/command/build.py", line 135, in run
            self.run_command(cmd_name)
          File "/usr/lib/python3.6/distutils/cmd.py", line 313, in run_command
            self.distribution.run_command(command)
          File "/usr/lib/python3.6/distutils/dist.py", line 974, in run_command
            cmd_obj.run()
          File "/usr/lib/python3/dist-packages/setuptools/command/build_ext.py", line 78, in run
            _build_ext.run(self)
          File "/usr/lib/python3.6/distutils/command/build_ext.py", line 339, in run
            self.build_extensions()
          File "/tmp/pip-build-c0iq5ua_/pillow/setup.py", line 790, in build_extensions
            raise RequiredDependencyException(f)
        __main__.RequiredDependencyException: zlib
        
        During handling of the above exception, another exception occurred:
        
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/tmp/pip-build-c0iq5ua_/pillow/setup.py", line 1037, in <module>
            raise RequiredDependencyException(msg)
        __main__.RequiredDependencyException:
        
        The headers or library files could not be found for zlib,
        a required dependency when compiling Pillow from source.
        
        Please see the install instructions at:
           https://pillow.readthedocs.io/en/latest/installation.html
        
        
        
        ----------------------------------------
    Command "/usr/bin/python3 -u -c "import setuptools, tokenize;__file__='/tmp/pip-build-c0iq5ua_/pillow/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record /tmp/pip-8eakyb7g-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-c0iq5ua_/pillow/
    The command '/bin/sh -c pip3 install   torch==1.4.0   torchvision==0.5.0   pandas==1.1.2   tqdm==4.49.0' returned a non-zero code: 1
    
    opened by yzs981130 0
Releases(v1.0.0)
  • v1.0.0(Jun 1, 2021)

    This release is the first feature release of Habitat.

    Habitat is a tool that predicts a deep neural network's training iteration execution time on a given GPU. To learn more about how Habitat works, please see our research paper.

    Source code(tar.gz)
    Source code(zip)
Owner
Geoffrey Yu
Computer Science PhD Student at MIT | Software Engineering '18 @uWaterloo
Geoffrey Yu
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022