A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

Overview

Gender Classification

This is a simple REST api that is served to classify gender on an image given based on faces.

Starting the server

To run this server and make prediction on your own images follow the following steps

  1. create a virtual environment and activate it
  2. run the following command to install packages
pip install -r requirements.txt
  1. navigate to the app.py file and run
python app.py

Model Metrics

The following table shows all the metrics summary we get after training the model for few 6 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
gender-classification classification of gender using (vgg16 and python flask) 95.04% 91.59% 91.59% 0.1273 0.2593 0.2593

Classification report

This classification report is based on the first batch of the validation dataset i used which consist of 32 images.

precision recall f1-score support

# precision recall f1-score support
accuracy 100% 512
macro avg 100% 100% 100% 512
weighted avg 100% 100% 100% 512

Confusion matrix

The following image represents a confusion matrix for the first batch in the validation set which contains 32 images:

Gender classification

If you hit the server at http://localhost:3001/api/gender you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/api/gender with a file image of the right format will yield the following json response to the client.

{
  "predictions": {
    "class": "male",
    "label": 1,
    "meta": {
      "description": "classifying gender based on the face of a human being, (vgg16).",
      "language": "python",
      "library": "tensforflow: v2.*",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class": "female",
        "label": 0,
        "probability": 0.019999999552965164
      },
      {
        "class": "male",
        "label": 1,
        "probability": 0.9800000190734863
      }
    ],
    "probability": 0.9800000190734863
  },
  "success": true
}

Using curl

Make sure that you have the image named female.jpg in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the image.

To make a curl POST request at http://localhost:3001/api/gender with the file female.jpg we run the following command.

curl -X POST -F [email protected] http://127.0.0.1:3001/api/gender

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type image and select the image you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": {
    "class": "male",
    "label": 1,
    "meta": {
      "description": "classifying gender based on the face of a human being, (vgg16).",
      "language": "python",
      "library": "tensforflow: v2.*",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class": "female",
        "label": 0,
        "probability": 0.019999999552965164
      },
      {
        "class": "male",
        "label": 1,
        "probability": 0.9800000190734863
      }
    ],
    "probability": 0.9800000190734863
  },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data)); ">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("image", input);
fetch("http://localhost:3001/predict", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "class": "male",
    "label": 1,
    "meta": {
      "description": "classifying gender based on the face of a human being, (vgg16).",
      "language": "python",
      "library": "tensforflow: v2.*",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class": "female",
        "label": 0,
        "probability": 0.019999999552965164
      },
      {
        "class": "male",
        "label": 1,
        "probability": 0.9800000190734863
      }
    ],
    "probability": 0.9800000190734863
  },
  "success": true
}

Notebooks

The ipynb notebook that i used for training the model and saving an .h5 file was can be found:

  1. Model Training And Saving
Owner
crispengari
ai || software development. (creating brains using artificial neural nets to make softwares that has human mind.)
crispengari
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022