A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Overview

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

1. 介绍

image

用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来去除重叠的 bbox。而 Confluence 则是利用曼哈顿距离作为 bbox 之间的重合度,并根据置信度加权的曼哈顿距离还作为最优 bbox 的选择依据。

2. 算法原理

2.1 曼哈顿距离

两点的曼哈顿距离就是坐标值插的 L1 范数:

image

推广到两个 bbox 对的哈曼顿距离则为:

image

该算法便是以曼哈顿距离作为两个 bbox 的重合度,曼哈顿距离小于一定值的的 bbox 则被认为是一个 cluster。

2.2 归一化

因为 bbox 有个各样的 size 和 position,所以直接计算曼哈顿距离就没有可比性,没有标准的度量。所以需要对其进行归一化:

image

2.3 置信度加权曼哈顿距离

NMS在去除重合 bbox 是仅考虑其置信度的高低,Condluence 则同时考虑了曼哈顿距离和置信度,构成一个置信度加权曼哈顿距离:

image

3. 算法实现

image

算法:

(1)针对每个类别挑出属于该类别的 bbox 集合 B

(2)遍历 B 中所有的 bbox bi,并计算 bi 和其他 boox的 曼哈顿距离 p,并归一化

2.1 选出 p < 2 的集合,作为一个 cluster,并计算加权曼哈顿距离 wp。 

2.2 在该 cluster 中挑选出最小的 wp 作为 bi 的 wp。 

(3)遍历完毕后,挑出 wp 最小的 bi 作为最优 bbox,添加进最终结果集合中,并将其从 B 去除

(4)把与最优 bbox 的曼哈顿距离小于阈值 MD 的的 bbox 从 B 中去除

(5)不断重复 (2) - (4),每次都选出一个最优 bbox,知道 B 为空

注意:

(1)原文伪代码第 5 行:optimalConfuence 初始化成一个比较大的值就可以,不一定要是 Ip

(2)原文伪代码第 12 行:应该是 Proximity / si

4. 实验结果

image

5. 代码解析

5.1 YOLOv3/4 的后处理

这个接口可以直接处理 YOLOv3/4 的 yolo 层的输出进行后处理

confluence_process(prediction, conf_thres=0.1, wp_thres=0.6)

支持多标签和单标签,并把数据重组后进行 confluence/NMS 处理

# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
    i, j = (x[:, 5:] > conf_thres).nonzero().t()
    x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else:  # best class only
    conf, j = x[:, 5:].max(1, keepdim=True)
    x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

5.2 Confluence 算法

confluence(prediction, class_num, wp_thres=0.6)

给所有目标添加上序号

index = np.arange(0, len(prediction), 1).reshape(-1,1)
infos = np.concatenate((prediction, index), 1)

不同类别单独处理,并遍历所有的剩余目标集合 B,直到集合为空,对应上面伪代码的(1)-(2)

for c in range(class_num):       
    pcs = infos[infos[:, 5] == c]             
    while (len(pcs)):                      
        n = len(pcs)       
        xs = pcs[:, [0, 2]]
        ys = pcs[:, [1, 3]]             
        ps = []        
        # 遍历 pcs,计算每一个box 和其余 box 的 p 值,然后聚类成簇,再根据 wp 挑出 best
        confluence_min = 10000
        best = None
        for i, pc in enumerate(pcs):

计算所有目标与其他目标的曼和顿距离 p 和加权曼哈顿距离 wp,p < 2 的目标作为一个 cluster,其中最小的 wp 作为该 cluster 的 wp

index_other = [j for j in range(n) if j!= i]
x_t = xs[i]
x_t = np.tile(x_t, (n-1, 1))
x_other = xs[index_other]
x_all = np.concatenate((x_t, x_other), 1)
.
.
.
# wp
wp = p / pc[4]
wp = wp[p < 2]

if (len(wp) == 0):
    value = 0
else:
    value = wp.min()

选出最小的 wp,确定目标

# select the bbox which has the smallest wp as the best bbox
if (value < confluence_min):
   confluence_min = value
   best = i  

然后把与目标的曼哈顿距离小于阈值的目标和本身都从集合 B 中去除

keep.append(int(pcs[best][6])) 
if (len(ps) > 0):               
    p = ps[best]
    index_ = np.where(p < wp_thres)[0]
    index_ = [i if i < best else i +1 for i in index_]
else:
    index_ = []
    
# delect the bboxes whose Manhattan Distance is below the predefined MD
index_eff = [j for j in range(n) if (j != best and j not in index_)]            
pcs = pcs[index_eff]

最后继续重复遍历集合 B,直到集合为空。

仓库里我放了一张测试照片和原始检测结果,大家可以直接用来调试 confluence 函数。

Credits:

https://arxiv.org/pdf/2012.00257.pdf

Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022