[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

Related tags

Deep Learningup-detr
Overview

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

This is the official PyTorch implementation and models for UP-DETR paper:

@article{dai2020up-detr,
  author  = {Zhigang Dai and Bolun Cai and Yugeng Lin and Junying Chen},
  title   = {UP-DETR: Unsupervised Pre-training for Object Detection with Transformers},
  journal = {arXiv preprint arXiv:2011.09094},
  year    = {2020},
}

In UP-DETR, we introduce a novel pretext named random query patch detection to pre-train transformers for object detection. UP-DETR inherits from DETR with the same ResNet-50 backbone, same Transformer encoder, decoder and same codebase. With unsupervised pre-training CNN, the whole UP-DETR model doesn't require any human annotations. UP-DETR achieves 43.1 AP on COCO with 300 epochs fine-tuning. The AP of open-source version is a little higher than paper report.

UP-DETR

Model Zoo

We provide pre-training UP-DETR and fine-tuning UP-DETR models on COCO, and plan to include more in future. The evaluation metric is same to DETR.

Here is the UP-DETR model pre-trained on ImageNet without labels. The CNN weight is initialized from SwAV, which is fixed during the transformer pre-training:

name backbone epochs url size md5
UP-DETR R50 (SwAV) 60 model | logs 164Mb 49f01f8b

Comparision with DETR:

name backbone (pre-train) epochs box AP url size
DETR R50 (Supervised) 500 42.0 - 159Mb
DETR R50 (SwAV) 300 42.1 - 159Mb
UP-DETR R50 (SwAV) 300 43.1 model | logs 159Mb

COCO val5k evaluation results of UP-DETR can be found in this gist.

Usage - Object Detection

There are no extra compiled components in UP-DETR and package dependencies are same to DETR. We provide instructions how to install dependencies via conda:

git clone tbd
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

UP-DETR follows two steps: pre-training and fine-tuning. We present the model pre-trained on ImageNet and then fine-tuned on COCO.

Unsupervised Pre-training

Data Preparation

Download and extract ILSVRC2012 train dataset.

We expect the directory structure to be the following:

path/to/imagenet/
  n06785654/  # caterogey directory
    n06785654_16140.JPEG # images
  n04584207/  # caterogey directory
    n04584207_14322.JPEG # images

Images can be organized disorderly because our pre-training is unsupervised.

Pre-training

To pr-train UP-DETR on a single node with 8 gpus for 60 epochs, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \
    --lr_drop 40 \
    --epochs 60 \
    --pre_norm \
    --num_patches 10 \
    --batch_size 32 \
    --feature_recon \
    --fre_cnn \
    --imagenet_path path/to/imagenet \
    --output_dir path/to/save_model

As the size of pre-training images is relative small, so we can set a large batch size.

It takes about 2 hours for a epoch, so 60 epochs pre-training takes about 5 days with 8 V100 gpus.

In our further ablation experiment, we found that object query shuffle is not helpful. So, we remove it in the open-source version.

Fine-tuning

Data Preparation

Download and extract COCO 2017 dataset train and val dataset.

The directory structure is expected as follows:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Fine-tuning

To fine-tune UP-DETR with 8 gpus for 300 epochs, run:

python -m torch.distributed.launch --nproc_per_node=8 --use_env detr_main.py \
    --lr_drop 200 \
    --epochs 300 \
    --lr_backbone 5e-4 \
    --pre_norm \
    --coco_path path/to/coco \
    --pretrain path/to/save_model/checkpoint.pth

The fine-tuning cost is exactly same to DETR, which takes 28 minutes with 8 V100 gpus. So, 300 epochs training takes about 6 days.

The model can also extended to panoptic segmentation, checking more details on DETR.

Notebook

We provide a notebook in colab to get the visualization result in the paper:

  • Visualization Notebook: This notebook shows how to perform query patch detection with the pre-training model (without any annotations fine-tuning).

vis

License

UP-DETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
dddzg
MSc student at SCUT
dddzg
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022