DeepLab2: A TensorFlow Library for Deep Labeling

Related tags

Deep Learningdeeplab2
Overview

DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks, including, but not limited to semantic segmentation, instance segmentation, panoptic segmentation, depth estimation, or even video panoptic segmentation.

Deep labeling refers to solving computer vision problems by assigning a predicted value for each pixel in an image with a deep neural network. As long as the problem of interest could be formulated in this way, DeepLab2 should serve the purpose. Additionally, this codebase includes our recent and state-of-the-art research models on deep labeling. We hope you will find it useful for your projects.

Installation

See Installation.

Dataset preparation

The dataset needs to be converted to TFRecord. We provide some examples below.

Some guidances about how to convert your own dataset.

Projects

We list a few projects that use DeepLab2.

Colab Demo

Running DeepLab2

See Getting Started. In short, run the following command:

To run DeepLab2 on GPUs, the following command should be used:

python training/train.py \
    --config_file=${CONFIG_FILE} \
    --mode={train | eval | train_and_eval | continuous_eval} \
    --model_dir=${BASE_MODEL_DIRECTORY} \
    --num_gpus=${NUM_GPUS}

Change logs

See Change logs for recent updates.

Contacts (Maintainers)

Please check FAQ if you have some questions before reporting the issues.

Disclaimer

  • Note that this library contains our re-implemented DeepLab models in TensorFlow2, and thus may have some minor differences from the published papers (e.g., learning rate).

  • This is not an official Google product.

Citing DeepLab2

If you find DeepLab2 useful for your project, please consider citing DeepLab2 along with the relevant DeepLab series.

  • DeepLab2:
@article{deeplab2_2021,
  author={Mark Weber and Huiyu Wang and Siyuan Qiao and Jun Xie and Maxwell D. Collins and Yukun Zhu and Liangzhe Yuan and Dahun Kim and Qihang Yu and Daniel Cremers and Laura Leal-Taixe and Alan L. Yuille and Florian Schroff and Hartwig Adam and Liang-Chieh Chen},
  title={{DeepLab2: A TensorFlow Library for Deep Labeling}},
  journal={arXiv: 2106.09748},
  year={2021}
}

References

  1. Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. "The cityscapes dataset for semantic urban scene understanding." In CVPR, 2016.

  2. Andreas Geiger, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti vision benchmark suite." In CVPR, 2012.

  3. Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. "Semantickitti: A dataset for semantic scene understanding of lidar sequences." In ICCV, 2019.

  4. Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar. "Panoptic segmentation." In CVPR, 2019.

  5. Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So Kweon. "Video panoptic segmentation." In CVPR, 2020.

  6. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence Zitnick. "Microsoft COCO: Common objects in context." In ECCV, 2014.

  7. Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad Schindler, Daniel Cremers, Ian Reid, Stefan Roth, and Laura Leal-Taixe. "MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking." IJCV, 2020.

Owner
Google Research
Google Research
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022