Code release for NeuS

Related tags

Deep LearningNeuS
Overview

NeuS

We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.

Project page | Paper | Data

This is the official repo for the implementation of NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction.

Usage

Data Convention

The data is organized as follows:

<case_name>
|-- cameras_xxx.npz    # camera parameters
|-- image
    |-- 000.png        # target image for each view
    |-- 001.png
    ...
|-- mask
    |-- 000.png        # target mask each view (For unmasked setting, set all pixels as 255)
    |-- 001.png
    ...

Here the cameras_xxx.npz follows the data format in IDR, where world_mat_xx denotes the world to image projection matrix, and scale_mat_xx denotes the normalization matrix.

Setup

Clone this repository

git clone https://github.com/Totoro97/NeuS.git
cd NeuS
pip install -r requirements.txt
Dependencies (click to expand)
  • torch==1.8.0
  • opencv_python==4.5.2.52
  • trimesh==3.9.8
  • numpy==1.19.2
  • pyhocon==0.3.57
  • icecream==2.1.0
  • tqdm==4.50.2
  • scipy==1.7.0
  • PyMCubes==0.1.2

Running

  • Training without mask
python exp_runner.py --mode train --conf ./confs/womask.conf --case <case_name>
  • Training with mask
python exp_runner.py --mode train --conf ./confs/wmask.conf --case <case_name>
  • Extract surface from trained model
python exp_runner.py --mode validate_mesh --conf <config_file> --case <case_name> --is_continue # use latest checkpoint

The corresponding mesh can be found in exp/<case_name>/<exp_name>/meshes/<iter_steps>.ply.

  • View interpolation
python exp_runner.py --mode interpolate_<img_idx_0>_<img_idx_1> --conf <config_file> --case <case_name> --is_continue # use latest checkpoint

The corresponding image set of view interpolation can be found in exp/<case_name>/<exp_name>/render/.

Citation

Cite as below if you find this repository is helpful to your project:

@article{wang2021neus,
  title={NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction},
  author={Wang, Peng and Liu, Lingjie and Liu, Yuan and Theobalt, Christian and Komura, Taku and Wang, Wenping},
  journal={arXiv preprint arXiv:2106.10689},
  year={2021}
}

Acknowledgement

Some code snippets are borrowed from IDR and NeRF-pytorch. Thanks for these great projects.

Owner
Peng Wang
PhD student @ HKU
Peng Wang
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022