CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

Overview

CV Backbones

including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab.

News

2022/01/05 PyramidTNT: An improved TNT baseline is released.

2021/09/28 The paper of TNT (Transformer in Transformer) is accepted by NeurIPS 2021.

2021/09/18 The extended version of Versatile Filters is accepted by T-PAMI.

2021/08/30 GhostNet paper is selected as the Most Influential CVPR 2020 Papers.

2021/08/26 The codes of LegoNet and Versatile Filters has been merged into this repo.

2021/06/15 The code of TNT (Transformer in Transformer) has been released in this repo.

2020/10/31 GhostNet+TinyNet achieves better performance. See details in our NeurIPS 2020 paper: arXiv.

2020/06/10 GhostNet is included in PyTorch Hub.


GhostNet Code

This repo provides GhostNet pretrained models and inference code for TensorFlow and PyTorch:

For training, please refer to tinynet or timm.

TinyNet Code

This repo provides TinyNet pretrained models and inference code for PyTorch:

TNT Code

This repo provides training code and pretrained models of TNT (Transformer in Transformer) for PyTorch:

The code of PyramidTNT is also released:

LegoNet Code

This repo provides the implementation of paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters (ICML 2019)

Versatile Filters Code

This repo provides the implementation of paper Learning Versatile Filters for Efficient Convolutional Neural Networks (NeurIPS 2018)

Citation

@inproceedings{ghostnet,
  title={GhostNet: More Features from Cheap Operations},
  author={Han, Kai and Wang, Yunhe and Tian, Qi and Guo, Jianyuan and Xu, Chunjing and Xu, Chang},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{tinynet,
  title={Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets},
  author={Han, Kai and Wang, Yunhe and Zhang, Qiulin and Zhang, Wei and Xu, Chunjing and Zhang, Tong},
  booktitle={NeurIPS},
  year={2020}
}
@inproceedings{tnt,
  title={Transformer in transformer},
  author={Han, Kai and Xiao, An and Wu, Enhua and Guo, Jianyuan and Xu, Chunjing and Wang, Yunhe},
  booktitle={NeurIPS},
  year={2021}
}
@inproceedings{legonet,
    title={LegoNet: Efficient Convolutional Neural Networks with Lego Filters},
    author={Yang, Zhaohui and Wang, Yunhe and Liu, Chuanjian and Chen, Hanting and Xu, Chunjing and Shi, Boxin and Xu, Chao and Xu, Chang},
    booktitle={ICML},
    year={2019}
  }
@inproceedings{wang2018learning,
  title={Learning versatile filters for efficient convolutional neural networks},
  author={Wang, Yunhe and Xu, Chang and Chunjing, XU and Xu, Chao and Tao, Dacheng},
  booktitle={NeurIPS},
  year={2018}
}

Other versions of GhostNet

This repo provides the TensorFlow/PyTorch code of GhostNet. Other versions and applications can be found in the following:

  1. timm: code with pretrained model
  2. Darknet: cfg file, and description
  3. Gluon/Keras/Chainer: code
  4. Paddle: code
  5. Bolt inference framework: benckmark
  6. Human pose estimation: code
  7. YOLO with GhostNet backbone: code
  8. Face recognition: cavaface, FaceX-Zoo, TFace
Comments
  • TypeError: __init__() got an unexpected keyword argument 'bn_tf'

    TypeError: __init__() got an unexpected keyword argument 'bn_tf'

    Hello, I want to ask what caused the following error when running the train.py file? thank you “ TypeError: init() got an unexpected keyword argument 'bn_tf' ”

    opened by ModeSky 16
  • Counting ReLU vs HardSwish FLOPs

    Counting ReLU vs HardSwish FLOPs

    Thank you very much for sharing the source code. I have a question related to FLOPs counting for ReLU and HardSwish. I saw in the paper the flops are the same in ReLU and HardSwish. Can you explain this situation? image

    opened by jahongir7174 10
  • kernel size in primary convolution of Ghost module

    kernel size in primary convolution of Ghost module

    Hi, It is said in your paper that the primary convolution in Ghost module can have customized kernel size, which is a major difference from existing efficient convolution schemes. However, it seems that in this code all the kernel size of primary convolution in Ghost module are set to [1, 1], and the kernel set in _CONV_DEFS_0 are only used in blocks of stride=2. Is it set intentionally?

    opened by YUHAN666 9
  • 用GhostModule替换Conv2d,loss降的很慢?

    用GhostModule替换Conv2d,loss降的很慢?

    我直接将efficientnet里面的MBConvBlock中的Conv2d替换为GhostModule: Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) 替换为 GhostModule(inp, oup), 其他参数不变,为什么损失比以前收敛的更慢了,一直降不下来?请问需要修改其他什么参数吗?

    opened by yc-cui 8
  • Training hyperparams on ImageNet

    Training hyperparams on ImageNet

    Hi, thanks for sharing such a wonderful work, I'd like to reproduce your results on ImageNet, could you please specify training parameters such as initial learning rate, how to decay it, batch size, etc. It would be even better if you can provide tricks to train GhostNet, such as label smoothing and data augmentation. Thx!

    good first issue 
    opened by sean-zhuh 8
  • Why did you exclude EfficientNetB0 from Accuracy-Latency chart?

    Why did you exclude EfficientNetB0 from Accuracy-Latency chart?

    @iamhankai Hi,

    Great work!

    1. Why did you exclude EfficientNetB0 (0.390 BFlops - 76.3% Top1) from Accuracy-Latency chart?

    2. Also what mini_batch_size did you use for training GhostNet?

    flops_latency

    opened by AlexeyAB 8
  • VIG pretrained weights

    VIG pretrained weights

    @huawei-noah-admin cna you please share the VIG pretraiend model on google drive or one drive as baidu is not accessible from our end

    THank in advance

    opened by abhigoku10 7
  • The implementation of Isotropic architecture

    The implementation of Isotropic architecture

    Hi, thanks for sharing this impressive work. The paper mentioned two architectures, Isotropic one and pyramid one. I noticed that in the code, this is a reduce_ratios, and this reduce_ratios are used by a avg_pooling operation to calculate before building the graph. I am wondering whether all I need to do is setting this reduce_ratios to [1,1,1,1] if I want to implement the Isotropic architecture. Thanks.

    self.n_blocks = sum(blocks) channels = opt.channels reduce_ratios = [4, 2, 1, 1] dpr = [x.item() for x in torch.linspace(0, drop_path, self.n_blocks)] num_knn = [int(x.item()) for x in torch.linspace(k, k, self.n_blocks)]

    opened by buptxiaofeng 6
  • Gradient overflow occurs while training tnt-ti model

    Gradient overflow occurs while training tnt-ti model

    ^@^@Train: 41 [ 0/625 ( 0%)] Loss: 4.564162 (4.5642) Time: 96.744s, 21.17/s (96.744s, 21.17/s) LR: 8.284e-04 Data: 94.025 (94.025) ^@^@^@^@Train: 41 [ 50/625 ( 8%)] Loss: 4.395192 (4.4797) Time: 2.742s, 746.96/s (7.383s, 277.38/s) LR: 8.284e-04 Data: 0.057 (4.683) ^@^@^@^@Train: 41 [ 100/625 ( 16%)] Loss: 4.424296 (4.4612) Time: 2.741s, 747.15/s (6.529s, 313.66/s) LR: 8.284e-04 Data: 0.056 (3.831) Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0

    And the top-1 acc is only 0.2 after 40 epochs.

    Any tips available here, dear @iamhankai @yitongh

    opened by jimmyflycv 6
  • Bloated model

    Bloated model

    Hi, I am using Ghostnet backbone for training YoloV3 model in Tensorflow, but I am getting a bloated model. The checkpoint data size is approx. 68MB, but the checkpoint given here is of approx 20MB https://github.com/huawei-noah/ghostnet/blob/master/tensorflow/models/ghostnet_checkpoint.data-00000-of-00001

    I am also training EfficientNet model with YoloV3 and that seems to be working fine, without any bloated size.

    Could anyone or the author please confirm if this is the correct architecture or anything seems weird? I have attached the Ghostnet architecture file out of the code.

    Thanks. ghostnet_model_arch.txt

    opened by ghost 6
  • Replace Conv2d in my network, however it becomes slower, why?

    Replace Conv2d in my network, however it becomes slower, why?

    Above all, thanks for your great work! It really inspires me a lot! But now I have a question.

    I replace all the Conv2d operations in my network except the final ones, the model parameters really becomes much more less. However, when testing, I found that the average forward time decreases a lot by the replacement (from 428FPS down to 354FPS). So, is this a normal phenomenon? Or is this because of the concat operation?

    opened by FunkyKoki 6
  • VIG for segmenation

    VIG for segmenation

    @iamhankai thanks for open-sourcing the code base . Can you please let me knw how to use the pvig for segmentation related activities its really helpful

    THanks in advance

    opened by abhigoku10 0
  • higher performance of ViG

    higher performance of ViG

    I try to train ViG-S on ImageNet and get 80.54% top1 accuracy, which is higher than that in paper, 80.4%. I wonder if 80.4 is the average of multiple trainings? If yes, how many reps do you use?

    opened by tdzdog 9
Releases(GhostNetV2)
Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022