Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Overview

Image Super-Resolution via Iterative Refinement

Paper | Project

Brief

This is a unoffical implementation about Image Super-Resolution via Iterative Refinement(SR3) by Pytorch.

There are some implement details with paper description, which maybe different with actual SR3 structure due to details missing.

  • We used the ResNet block and channel concatenation style like vanilla DDPM.
  • We used the attention mechanism in low resolution feature(16×16) like vanilla DDPM.
  • We encoding the $\gamma$ as FilM strcutrue did in WaveGrad, and embedding it without affine transformation.

Status

Conditional generation(super resolution)

  • 16×16 -> 128×128 on FFHQ-CelebaHQ
  • 64×64 -> 512×512 on FFHQ-CelebaHQ

Unconditional generation

  • 128×128 face generation on FFHQ
  • 1024×1024 face generation by a cascade of 3 models

Training Step

  • log / logger
  • metrics evaluation
  • multi-gpu support
  • resume training / pretrained model

Results

We set the maximum reverse steps budget to 2000 now.

Tasks/Metrics SSIM(+) PSNR(+) FID(-) IS(+)
16×16 -> 128×128 0.675 23.26 - -
64×64 -> 512×512 - -
128×128 - -
1024×1024 - -
show show show
show show show

Usage

Pretrained Model

This paper is based on "Denoising Diffusion Probabilistic Models", and we build both DDPM/SR3 network structure, which use timesteps/gama as model embedding input, respectively. In our experiments, SR3 model can achieve better visual results with same reverse steps and learning rate. You can select the json files with annotated suffix names to train different model.

Tasks Google Drive
16×16 -> 128×128 on FFHQ-CelebaHQ SR3
128×128 face generation on FFHQ SR3
# Download the pretrain model and edit [sr|sample]_[ddpm|sr3]_[resolution option].json about "resume_state":
"resume_state": [your pretrain model path]

We have not trained the model until converged for time reason, which means there are a lot room to optimization.

Data Prepare

New Start

If you didn't have the data, you can prepare it by following steps:

Download the dataset and prepare it in LMDB or PNG format using script.

# Resize to get 16×16 LR_IMGS and 128×128 HR_IMGS, then prepare 128×128 Fake SR_IMGS by bicubic interpolation
python prepare.py  --path [dataset root]  --out [output root] --size 16,128 -l

then you need to change the datasets config to your data path and image resolution:

"datasets": {
    "train": {
        "dataroot": "dataset/ffhq_16_128", // [output root] in prepare.py script
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "lmdb", //lmdb or img, path of img files
    },
    "val": {
        "dataroot": "dataset/celebahq_16_128", // [output root] in prepare.py script
    }
},

Own Data

You also can use your image data by following steps.

At first, you should organize images layout like this:

# set the high/low resolution images, bicubic interpolation images path
dataset/celebahq_16_128/
├── hr_128
├── lr_16
└── sr_16_128

then you need to change the dataset config to your data path and image resolution:

"datasets": {
    "train|val": {
        "dataroot": "dataset/celebahq_16_128",
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "img", //lmdb or img, path of img files
    }
},

Training/Resume Training

# Use sr.py and sample.py to train the super resolution task and unconditional generation task, respectively.
# Edit json files to adjust network structure and hyperparameters
python sr.py -p train -c config/sr_sr3.json

Test/Evaluation

# Edit json to add pretrain model path and run the evaluation 
python sr.py -p val -c config/sr_sr3.json

Evaluation Alone

# Quantitative evaluation using SSIM/PSNR metrics on given dataset root
python eval.py -p [dataset root]

Acknowledge

Our work is based on the following theoretical works:

and we are benefit a lot from following projects:

Owner
LiangWei Jiang
LiangWei Jiang
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022