Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Overview

Image Super-Resolution via Iterative Refinement

Paper | Project

Brief

This is a unoffical implementation about Image Super-Resolution via Iterative Refinement(SR3) by Pytorch.

There are some implement details with paper description, which maybe different with actual SR3 structure due to details missing.

  • We used the ResNet block and channel concatenation style like vanilla DDPM.
  • We used the attention mechanism in low resolution feature(16×16) like vanilla DDPM.
  • We encoding the $\gamma$ as FilM strcutrue did in WaveGrad, and embedding it without affine transformation.

Status

Conditional generation(super resolution)

  • 16×16 -> 128×128 on FFHQ-CelebaHQ
  • 64×64 -> 512×512 on FFHQ-CelebaHQ

Unconditional generation

  • 128×128 face generation on FFHQ
  • 1024×1024 face generation by a cascade of 3 models

Training Step

  • log / logger
  • metrics evaluation
  • multi-gpu support
  • resume training / pretrained model

Results

We set the maximum reverse steps budget to 2000 now.

Tasks/Metrics SSIM(+) PSNR(+) FID(-) IS(+)
16×16 -> 128×128 0.675 23.26 - -
64×64 -> 512×512 - -
128×128 - -
1024×1024 - -
show show show
show show show

Usage

Pretrained Model

This paper is based on "Denoising Diffusion Probabilistic Models", and we build both DDPM/SR3 network structure, which use timesteps/gama as model embedding input, respectively. In our experiments, SR3 model can achieve better visual results with same reverse steps and learning rate. You can select the json files with annotated suffix names to train different model.

Tasks Google Drive
16×16 -> 128×128 on FFHQ-CelebaHQ SR3
128×128 face generation on FFHQ SR3
# Download the pretrain model and edit [sr|sample]_[ddpm|sr3]_[resolution option].json about "resume_state":
"resume_state": [your pretrain model path]

We have not trained the model until converged for time reason, which means there are a lot room to optimization.

Data Prepare

New Start

If you didn't have the data, you can prepare it by following steps:

Download the dataset and prepare it in LMDB or PNG format using script.

# Resize to get 16×16 LR_IMGS and 128×128 HR_IMGS, then prepare 128×128 Fake SR_IMGS by bicubic interpolation
python prepare.py  --path [dataset root]  --out [output root] --size 16,128 -l

then you need to change the datasets config to your data path and image resolution:

"datasets": {
    "train": {
        "dataroot": "dataset/ffhq_16_128", // [output root] in prepare.py script
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "lmdb", //lmdb or img, path of img files
    },
    "val": {
        "dataroot": "dataset/celebahq_16_128", // [output root] in prepare.py script
    }
},

Own Data

You also can use your image data by following steps.

At first, you should organize images layout like this:

# set the high/low resolution images, bicubic interpolation images path
dataset/celebahq_16_128/
├── hr_128
├── lr_16
└── sr_16_128

then you need to change the dataset config to your data path and image resolution:

"datasets": {
    "train|val": {
        "dataroot": "dataset/celebahq_16_128",
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "img", //lmdb or img, path of img files
    }
},

Training/Resume Training

# Use sr.py and sample.py to train the super resolution task and unconditional generation task, respectively.
# Edit json files to adjust network structure and hyperparameters
python sr.py -p train -c config/sr_sr3.json

Test/Evaluation

# Edit json to add pretrain model path and run the evaluation 
python sr.py -p val -c config/sr_sr3.json

Evaluation Alone

# Quantitative evaluation using SSIM/PSNR metrics on given dataset root
python eval.py -p [dataset root]

Acknowledge

Our work is based on the following theoretical works:

and we are benefit a lot from following projects:

Owner
LiangWei Jiang
LiangWei Jiang
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022