Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

Related tags

Deep LearningRMNet
Overview

RMNet

This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation.

Language grade: Python Total alerts

Overview

Cite this work

@inproceedings{xie2021efficient,
  title={Efficient Regional Memory Network for Video Object Segmentation},
  author={Xie, Haozhe and 
          Yao, Hongxun and 
          Zhou, Shangchen and 
          Zhang, Shengping and 
          Sun, Wenxiu},
  booktitle={CVPR},
  year={2021}
}

Datasets

We use the ECSSD, COCO, PASCAL VOC, MSRA10K, DAVIS, and YouTube-VOS datasets in our experiments, which are available below:

Pretrained Models

The pretrained models for DAVIS and YouTube-VOS are available as follows:

Prerequisites

Clone the Code Repository

git clone https://github.com/hzxie/RMNet.git

Install Python Denpendencies

cd RMNet
pip install -r requirements.txt

Build PyTorch Extensions

NOTE: PyTorch >= 1.4, CUDA >= 9.0 and GCC >= 4.9 are required.

RMNET_HOME=`pwd`

cd $RMNET_HOME/extensions/reg_att_map_generator
python setup.py install --user

cd $RMNET_HOME/extensions/flow_affine_transformation
python setup.py install --user

Precompute the Optical Flow

Update Settings in config.py

You need to update the file path of the datasets:

__C.DATASETS                                     = edict()
__C.DATASETS.DAVIS                               = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH            = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH                 = '/path/to/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH          = '/path/to/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH        = '/path/to/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS                         = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH      = '/path/to/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH           = '/path/to/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH    = '/path/to/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH  = '/path/to/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC                          = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH       = '/path/to/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH            = '/path/to/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH     = '/path/to/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD                               = edict()
__C.DATASETS.ECSSD.N_IMAGES                      = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH                 = '/path/to/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH          = '/path/to/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K                             = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH          = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH               = '/path/to/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH        = '/path/to/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO                              = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH           = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH                = '/path/to/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH         = '/path/to/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K                              = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH           = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH                = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH         = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'

# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET                        = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO']  # Pretrain
__C.DATASET.TRAIN_DATASET                        = ['YOUTUBE_VOS', 'DAVISx5']                    # Fine-tune
__C.DATASET.TEST_DATASET                         = 'DAVIS'

# Network Options: RMNet, TinyFlowNet
__C.TRAIN.NETWORK                                = 'RMNet'

Get Started

To train RMNet, you can simply use the following command:

python3 runner.py

To test RMNet, you can use the following command:

python3 runner.py --test --weights=/path/to/pretrained/model.pth

License

This project is open sourced under MIT license.

Owner
Haozhe Xie
I am a Ph.D. candidate in Harbin Institute of Technology, focusing on 3D reconstruction, video segmentation, and computer vision.
Haozhe Xie
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022