Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

Related tags

Deep LearningRMNet
Overview

RMNet

This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation.

Language grade: Python Total alerts

Overview

Cite this work

@inproceedings{xie2021efficient,
  title={Efficient Regional Memory Network for Video Object Segmentation},
  author={Xie, Haozhe and 
          Yao, Hongxun and 
          Zhou, Shangchen and 
          Zhang, Shengping and 
          Sun, Wenxiu},
  booktitle={CVPR},
  year={2021}
}

Datasets

We use the ECSSD, COCO, PASCAL VOC, MSRA10K, DAVIS, and YouTube-VOS datasets in our experiments, which are available below:

Pretrained Models

The pretrained models for DAVIS and YouTube-VOS are available as follows:

Prerequisites

Clone the Code Repository

git clone https://github.com/hzxie/RMNet.git

Install Python Denpendencies

cd RMNet
pip install -r requirements.txt

Build PyTorch Extensions

NOTE: PyTorch >= 1.4, CUDA >= 9.0 and GCC >= 4.9 are required.

RMNET_HOME=`pwd`

cd $RMNET_HOME/extensions/reg_att_map_generator
python setup.py install --user

cd $RMNET_HOME/extensions/flow_affine_transformation
python setup.py install --user

Precompute the Optical Flow

Update Settings in config.py

You need to update the file path of the datasets:

__C.DATASETS                                     = edict()
__C.DATASETS.DAVIS                               = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH            = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH                 = '/path/to/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH          = '/path/to/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH        = '/path/to/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS                         = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH      = '/path/to/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH           = '/path/to/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH    = '/path/to/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH  = '/path/to/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC                          = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH       = '/path/to/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH            = '/path/to/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH     = '/path/to/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD                               = edict()
__C.DATASETS.ECSSD.N_IMAGES                      = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH                 = '/path/to/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH          = '/path/to/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K                             = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH          = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH               = '/path/to/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH        = '/path/to/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO                              = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH           = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH                = '/path/to/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH         = '/path/to/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K                              = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH           = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH                = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH         = '/path/to/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'

# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET                        = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO']  # Pretrain
__C.DATASET.TRAIN_DATASET                        = ['YOUTUBE_VOS', 'DAVISx5']                    # Fine-tune
__C.DATASET.TEST_DATASET                         = 'DAVIS'

# Network Options: RMNet, TinyFlowNet
__C.TRAIN.NETWORK                                = 'RMNet'

Get Started

To train RMNet, you can simply use the following command:

python3 runner.py

To test RMNet, you can use the following command:

python3 runner.py --test --weights=/path/to/pretrained/model.pth

License

This project is open sourced under MIT license.

Owner
Haozhe Xie
I am a Ph.D. candidate in Harbin Institute of Technology, focusing on 3D reconstruction, video segmentation, and computer vision.
Haozhe Xie
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022