Github project for Attention-guided Temporal Coherent Video Object Matting.

Related tags

Deep LearningTCVOM
Overview

Attention-guided Temporal Coherent Video Object Matting

This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matting (arXiv:2105.11427). We provide our code, the supplementary material, trained model and VideoMatting108 dataset here. For the trimap generation module, please see TCVOM-TGM.

The code, the trained model and the dataset are for academic and non-commercial use only.

The supplementary material can be found here.

Table of Contents

VideoMatting108 Dataset

VideoMatting108 is a large video matting dataset that contains 108 video clips with their corresponding groundtruth alpha matte, all in 1080p resolution, 80 clips for training and 28 clips for validation.

You can download the dataset here. The total size of the dataset is 192GB and we've split the archive into 1GB chunks.

The contents of the dataset are the following:

  • FG: contains the foreground RGBA image, where the alpha channel is the groundtruth matte and RGB channel is the groundtruth foreground.
  • BG: contains background RGB image used for composition.
  • flow_png_val: contains quantized optical flow of validation video clips for calculating MESSDdt metric. You can choose not to download this folder if you don't need to calculate this metric. You can refer to the _flow_read() function in calc_metric.py for usage.
  • *_videos*.txt: train / val split.
  • frame_corr.json: FG / BG frame pair used for composition.

After decompressing, the dataset folder should have the structure of the following (please rename flow_png_val to flow_png):

|---dataset
  |-FG_done
  |-BG_done
  |-flow_png
  |-frame_corr.json
  |-train_videos.txt
  |-train_videos_subset.txt
  |-val_videos.txt
  |-val_videos_subset.txt

Models

Currently our method supports four different image matting methods as base.

  • gca (GCA Matting by Li et al., code is from here)
  • dim (DeepImageMatting by Xu et al., we use the reimplementation code from here)
  • index (IndexNet Matting by Lu et al., code is from here)
  • fba (FBA Matting by Forte et al., code is from here)
    • There are some differences in our training and the original FBA paper. We believe that there are still space for further performance gain through hyperparameter fine-tuning.
      • We did not use the foreground extension technique during training. Also we use four GPUs instead of one.
      • We used the conventional adam optimizer instead of radam.
      • We used mean instead of sum during loss computation to keep the loss balanced (especially for L_af).

The trained model can be downloaded here. We provide four different weights for every base method.

  • *_SINGLE_Lim.pth: The trained weight of the base image matting method on the VideoMatting108 dataset without TAM. Only L_im is used during the pretrain. This is the baseline model.
  • *_TAM_Lim_Ltc_Laf.pth: The trained weight of base image matting method with TAM on VideoMatting108 dataset. L_im, L_tc and L_af is used during the training. This is our full model.
  • *_TAM_pretrain.pth: The pretrained weight of base image matting method with TAM on the DIM dataset. Only L_im is used during the training.
  • *_fe.pth: The converted weight from the original model checkpoint, only used for pretraining TAM.

Results

This is the quantitative result on VideoMatting108 validation dataset with medium width trimap. The metric is averaged on all 28 validation video clips.

We use CUDA 10.2 during the inference. Using CUDA 11.1 might result in slightly lower metric. All metrics are calculated with calc_metric.py.

Method Loss SSDA dtSSD MESSDdt MSE*(10^3) mSAD
GCA+F (Baseline) L_im 55.82 31.64 2.15 8.20 40.85
GCA+TAM L_im+L_tc+L_af 50.41 27.28 1.48 7.07 37.65
DIM+F (Baseline) L_im 61.85 34.55 2.82 9.99 44.38
DIM+TAM L_im+L_tc+L_af 58.94 29.89 2.06 9.02 43.28
Index+F (Baseline) L_im 58.53 33.03 2.33 9.37 43.53
Index+TAM L_im+L_tc+L_af 57.91 29.36 1.81 8.78 43.17
FBA+F (Baseline) L_im 57.47 29.60 2.19 9.28 40.57
FBA+TAM L_im+L_tc+L_af 51.57 25.50 1.59 7.61 37.24

Usage

Requirements

Python=3.8
Pytorch=1.6.0
numpy
opencv-python
imgaug
tqdm
yacs

Inference

pred_single.py and pred_vmn.py automatically use all CUDA devices available. pred_test.py uses cuda:0 device as default.

  • Inference on VideoMatting108 validation set using our full model

    • python pred_vmd.py --model {gca,dim,index,fba} --data /path/to/VideoMatting108dataset --load /path/to/weight.pth --trimap {wide,narrow,medium} --save /path/to/outdir
  • Inference on VideoMatting108 validation set using the baseline model

    • python pred_single.py --dataset vmd --model {gca,dim,index,fba} --data /path/to/VideoMatting108dataset --load /path/to/weight.pth --trimap {wide,narrow,medium} --save /path/to/outdir
  • Calculating metrics

    • python calc_metric.py --pred /path/to/prediction/result --data /path/to/VideoMatting108dataset
    • The result will be saved in metric.json inside /path/to/prediction/result. Use tail to see the final averaged result.

  • Inference on test video clips

    • First, prepare the data. Make sure the workspace folder has the structure of the following:

      |---workspace
        |---video1
          |---00000_rgb.png
          |---00000_trimap.png
          |---00001_rgb.png
          |---00001_trimap.png
          |---....
        |---video2
        |---video3
        |---...
      
    • python pred_test.py --gpu CUDA_DEVICES_NUMBER_SPLIT_BY_COMMA --model {gca,vmn_gca,dim,vmn_dim,index,vmn_index,fba,vmn_fba} --data /path/to/workspace --load /path/to/weight.pth --save /path/to/outdir [video1] [video2] ...
      • The model parameter: vmn_BASEMETHOD corresponds to our full model, BASEMETHOD corresponds to the baseline model.
      • Without specifying the name of the video clip folders in the command line, the script will process all video clips under /path/to/workspace.

Training

PY_CMD="python -m torch.distributed.launch --nproc_per_node=NUMBER_OF_CUDA_DEVICES"
  • Pretrain TAM on DIM dataset. Please see cfgs/pretrain_vmn_BASEMETHOD.yaml for configuration and refer to dataset/DIM.py for dataset preparation.

    $PY_CMD pretrain_ddp.py --cfg cfgs/pretrain_vmn_index.yaml
  • Training our full method on VideoMatting108 dataset. This will load the pretrained TAM weight as initialization. Please see cfgs/vmd_vmn_BASEMETHOD_pretrained_30ep.yaml for configuration.

    $PY_CMD train_ddp.py --cfg /path/to/config.yaml
  • Training the baseline method on VideoMatting108 dataset without TAM. Please see cfgs/vmd_vmn_BASEMETHOD_pretrained_30ep_single.yaml for configuration.

    $PY_CMD train_single_ddp.py --cfg /path/to/config.yaml

Contact

If you have any questions, please feel free to contact [email protected].

PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022