Github project for Attention-guided Temporal Coherent Video Object Matting.

Related tags

Deep LearningTCVOM
Overview

Attention-guided Temporal Coherent Video Object Matting

This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matting (arXiv:2105.11427). We provide our code, the supplementary material, trained model and VideoMatting108 dataset here. For the trimap generation module, please see TCVOM-TGM.

The code, the trained model and the dataset are for academic and non-commercial use only.

The supplementary material can be found here.

Table of Contents

VideoMatting108 Dataset

VideoMatting108 is a large video matting dataset that contains 108 video clips with their corresponding groundtruth alpha matte, all in 1080p resolution, 80 clips for training and 28 clips for validation.

You can download the dataset here. The total size of the dataset is 192GB and we've split the archive into 1GB chunks.

The contents of the dataset are the following:

  • FG: contains the foreground RGBA image, where the alpha channel is the groundtruth matte and RGB channel is the groundtruth foreground.
  • BG: contains background RGB image used for composition.
  • flow_png_val: contains quantized optical flow of validation video clips for calculating MESSDdt metric. You can choose not to download this folder if you don't need to calculate this metric. You can refer to the _flow_read() function in calc_metric.py for usage.
  • *_videos*.txt: train / val split.
  • frame_corr.json: FG / BG frame pair used for composition.

After decompressing, the dataset folder should have the structure of the following (please rename flow_png_val to flow_png):

|---dataset
  |-FG_done
  |-BG_done
  |-flow_png
  |-frame_corr.json
  |-train_videos.txt
  |-train_videos_subset.txt
  |-val_videos.txt
  |-val_videos_subset.txt

Models

Currently our method supports four different image matting methods as base.

  • gca (GCA Matting by Li et al., code is from here)
  • dim (DeepImageMatting by Xu et al., we use the reimplementation code from here)
  • index (IndexNet Matting by Lu et al., code is from here)
  • fba (FBA Matting by Forte et al., code is from here)
    • There are some differences in our training and the original FBA paper. We believe that there are still space for further performance gain through hyperparameter fine-tuning.
      • We did not use the foreground extension technique during training. Also we use four GPUs instead of one.
      • We used the conventional adam optimizer instead of radam.
      • We used mean instead of sum during loss computation to keep the loss balanced (especially for L_af).

The trained model can be downloaded here. We provide four different weights for every base method.

  • *_SINGLE_Lim.pth: The trained weight of the base image matting method on the VideoMatting108 dataset without TAM. Only L_im is used during the pretrain. This is the baseline model.
  • *_TAM_Lim_Ltc_Laf.pth: The trained weight of base image matting method with TAM on VideoMatting108 dataset. L_im, L_tc and L_af is used during the training. This is our full model.
  • *_TAM_pretrain.pth: The pretrained weight of base image matting method with TAM on the DIM dataset. Only L_im is used during the training.
  • *_fe.pth: The converted weight from the original model checkpoint, only used for pretraining TAM.

Results

This is the quantitative result on VideoMatting108 validation dataset with medium width trimap. The metric is averaged on all 28 validation video clips.

We use CUDA 10.2 during the inference. Using CUDA 11.1 might result in slightly lower metric. All metrics are calculated with calc_metric.py.

Method Loss SSDA dtSSD MESSDdt MSE*(10^3) mSAD
GCA+F (Baseline) L_im 55.82 31.64 2.15 8.20 40.85
GCA+TAM L_im+L_tc+L_af 50.41 27.28 1.48 7.07 37.65
DIM+F (Baseline) L_im 61.85 34.55 2.82 9.99 44.38
DIM+TAM L_im+L_tc+L_af 58.94 29.89 2.06 9.02 43.28
Index+F (Baseline) L_im 58.53 33.03 2.33 9.37 43.53
Index+TAM L_im+L_tc+L_af 57.91 29.36 1.81 8.78 43.17
FBA+F (Baseline) L_im 57.47 29.60 2.19 9.28 40.57
FBA+TAM L_im+L_tc+L_af 51.57 25.50 1.59 7.61 37.24

Usage

Requirements

Python=3.8
Pytorch=1.6.0
numpy
opencv-python
imgaug
tqdm
yacs

Inference

pred_single.py and pred_vmn.py automatically use all CUDA devices available. pred_test.py uses cuda:0 device as default.

  • Inference on VideoMatting108 validation set using our full model

    • python pred_vmd.py --model {gca,dim,index,fba} --data /path/to/VideoMatting108dataset --load /path/to/weight.pth --trimap {wide,narrow,medium} --save /path/to/outdir
  • Inference on VideoMatting108 validation set using the baseline model

    • python pred_single.py --dataset vmd --model {gca,dim,index,fba} --data /path/to/VideoMatting108dataset --load /path/to/weight.pth --trimap {wide,narrow,medium} --save /path/to/outdir
  • Calculating metrics

    • python calc_metric.py --pred /path/to/prediction/result --data /path/to/VideoMatting108dataset
    • The result will be saved in metric.json inside /path/to/prediction/result. Use tail to see the final averaged result.

  • Inference on test video clips

    • First, prepare the data. Make sure the workspace folder has the structure of the following:

      |---workspace
        |---video1
          |---00000_rgb.png
          |---00000_trimap.png
          |---00001_rgb.png
          |---00001_trimap.png
          |---....
        |---video2
        |---video3
        |---...
      
    • python pred_test.py --gpu CUDA_DEVICES_NUMBER_SPLIT_BY_COMMA --model {gca,vmn_gca,dim,vmn_dim,index,vmn_index,fba,vmn_fba} --data /path/to/workspace --load /path/to/weight.pth --save /path/to/outdir [video1] [video2] ...
      • The model parameter: vmn_BASEMETHOD corresponds to our full model, BASEMETHOD corresponds to the baseline model.
      • Without specifying the name of the video clip folders in the command line, the script will process all video clips under /path/to/workspace.

Training

PY_CMD="python -m torch.distributed.launch --nproc_per_node=NUMBER_OF_CUDA_DEVICES"
  • Pretrain TAM on DIM dataset. Please see cfgs/pretrain_vmn_BASEMETHOD.yaml for configuration and refer to dataset/DIM.py for dataset preparation.

    $PY_CMD pretrain_ddp.py --cfg cfgs/pretrain_vmn_index.yaml
  • Training our full method on VideoMatting108 dataset. This will load the pretrained TAM weight as initialization. Please see cfgs/vmd_vmn_BASEMETHOD_pretrained_30ep.yaml for configuration.

    $PY_CMD train_ddp.py --cfg /path/to/config.yaml
  • Training the baseline method on VideoMatting108 dataset without TAM. Please see cfgs/vmd_vmn_BASEMETHOD_pretrained_30ep_single.yaml for configuration.

    $PY_CMD train_single_ddp.py --cfg /path/to/config.yaml

Contact

If you have any questions, please feel free to contact [email protected].

This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022