Few-NERD: Not Only a Few-shot NER Dataset

Related tags

Deep LearningFew-NERD
Overview

Few-NERD: Not Only a Few-shot NER Dataset

This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset. Check out the website of Few-NERD.

Contents

Overview

Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset, which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER).

The schema of Few-NERD is:

Few-NERD is manually annotated based on the context, for example, in the sentence "London is the fifth album by the British rock band…", the named entity London is labeled as Art-Music.

Requirements

 Run the following script to install the remaining dependencies,

pip install -r requirements.txt

Few-NERD Dataset

Get the Data

  • Few-NERD contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities and 4,601,223 tokens.
  • We have splitted the data into 3 training mode. One for supervised setting-supervised, theo ther two for few-shot setting inter and intra. Each contains three files train.txtdev.txttest.txtsuperviseddatasets are randomly split. inter datasets are randomly split within coarse type, i.e. each file contains all 8 coarse types but different fine-grained types. intra datasets are randomly split by coarse type.
  • The splitted dataset can be downloaded automatically once you run the model. If you want to download the data manually, run data/download.sh, remember to add parameter supervised/inter/intra to indicte the type of the dataset

To obtain the three benchmarks datasets of Few-NERD, simply run the bash file data/download.sh

bash data/download.sh supervised

Data Format

The data are pre-processed into the typical NER data forms as below (token\tlabel).

Between	O
1789	O
and	O
1793	O
he	O
sat	O
on	O
a	O
committee	O
reviewing	O
the	O
administrative	MISC-law
constitution	MISC-law
of	MISC-law
Galicia	MISC-law
to	O
little	O
effect	O
.	O

Structure

The structure of our project is:

--util
| -- framework.py
| -- data_loader.py
| -- viterbi.py             # viterbi decoder for structshot only
| -- word_encoder
| -- fewshotsampler.py

-- proto.py                 # prototypical model
-- nnshot.py                # nnshot model

-- train_demo.py            # main training script

Key Implementations

Sampler

As established in our paper, we design an N way K~2K shot sampling strategy in our work , the implementation is sat util/fewshotsampler.py.

ProtoBERT

Prototypical nets with BERT is implemented in model/proto.py.

How to Run

Run train_demo.py. The arguments are presented below. The default parameters are for proto model on intermode dataset.

-- mode                 training mode, must be inter, intra, or supervised
-- trainN               N in train
-- N                    N in val and test
-- K                    K shot
-- Q                    Num of query per class
-- batch_size           batch size
-- train_iter           num of iters in training
-- val_iter             num of iters in validation
-- test_iter            num of iters in testing
-- val_step             val after training how many iters
-- model                model name, must be proto, nnshot or structshot
-- max_length           max length of tokenized sentence
-- lr                   learning rate
-- weight_decay         weight decay
-- grad_iter            accumulate gradient every x iterations
-- load_ckpt            path to load model
-- save_ckpt            path to save model
-- fp16                 use nvidia apex fp16
-- only_test            no training process, only test
-- ckpt_name            checkpoint name
-- seed                 random seed
-- pretrain_ckpt        bert pre-trained checkpoint
-- dot                  use dot instead of L2 distance in distance calculation
-- use_sgd_for_bert     use SGD instead of AdamW for BERT.
# only for structshot
-- tau                  StructShot parameter to re-normalizes the transition probabilities
  • For hyperparameter --tau in structshot, we use 0.32 in 1-shot setting, 0.318 for 5-way-5-shot setting, and 0.434 for 10-way-5-shot setting.

  • Take structshot model on inter dataset for example, the expriments can be run as follows.

5-way-1~5-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 1 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.32

5-way-5~10-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 5 --Q 5 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.318

10-way-1~5-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 10 --N 10 --K 1 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.32

10-way-5~10-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 5 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.434

Citation

If you use Few-NERD in your work, please cite our paper:

@inproceedings{ding2021few,
title={Few-NERD: A Few-Shot Named Entity Recognition Dataset},
author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie, Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan},
booktitle={ACL-IJCNLP},
year={2021}
}

Connection

If you have any questions, feel free to contact

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022