Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Overview

Foodi-ML dataset

This is the GitHub repository for the Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset. This dataset contains over 1.5M unique images and over 9.5M store names, product names, descriptions and collection sections gathered from the Glovo application. The data made available corresponds to food, drinks and groceries products from over 37 countries in Europe, the Middle East, Africa and Latin America. The dataset comprehends 33 languages, including 870k samples of languages of countries from Eastern Europe and West Asia such as Ukrainian and Kazakh, which have been so far underrepresented in publicly available visio-linguistic datasets. The dataset also includes widely spoken languages such as Spanish and English.

License

The FooDI-ML dataset is offered under the BY-NC-SA license.

1. Download the dataset

The FooDI-ML dataset is hosted in a S3 bucket in AWS. Therefore AWS CLI is needed to download it. Our dataset is composed of:

  • One DataFrame (glovo-foodi-ml-dataset) stored as a csv file containing all text information + image paths in S3. The size of this CSV file is 540 MB.
  • Set of images listed in the DataFrame. The disk space required to store all images is 316.1 GB.

1.1. Download AWS CLI

If you do not have AWS CLI already installed, please download the latest version of AWS CLI for your operating system.

1.2. Download FooDI-ML

  1. Run the following command to download the DataFrame in ENTER_DESTINATION_PATH directory. We provide an example as if we were going to download the dataset in the directory /mnt/data/foodi-ml/.

    aws s3 cp s3://glovo-products-dataset-d1c9720d/glovo-foodi-ml-dataset.csv ENTER_DESTINATION_PATH --no-sign-request

    Example: aws s3 cp s3://glovo-products-dataset-d1c9720d/glovo-foodi-ml-dataset.csv /mnt/data/foodi-ml/ --no-sign-request

  2. Run the following command to download the images in ENTER_DESTINATION_PATH/dataset directory (please note the appending of /dataset). This command will download the images in ENTER_DESTINATION_PATHdirectory.

    aws s3 cp --recursive s3://glovo-products-dataset-d1c9720d/dataset ENTER_DESTINATION_PATH/dataset --no-sign-request --quiet

    Example: aws s3 cp --recursive s3://glovo-products-dataset-d1c9720d/dataset /mnt/data/foodi-ml/dataset --no-sign-request --quiet

  3. Run the script rename_images.py. This script modifies the DataFrame column to include the paths of the images in the location you specified with ENTER_DESTINATION_PATH/dataset.

    pip install pandas
    python scripts/rename_images.py --output-dir ENTER_DESTINATION_PATH
    

Getting started

Our dataset is managed by the DataFrame glovo-foodi-ml-dataset.csv. This dataset contains the following columns:

  • country_code: This column comprehends 37 unique country codes as explained in our paper. These codes are:

    'ES', 'PL', 'CI', 'PT', 'MA', 'IT', 'AR', 'BG', 'KZ', 'BR', 'ME', 'TR', 'PE', 'SI', 'GE', 'EG', 'RS', 'RO', 'HR', 'UA', 'DO', 'KG', 'CR', 'UY', 'EC', 'HN', 'GH', 'KE', 'GT', 'CL', 'FR', 'BA', 'PA', 'UG', 'MD', 'NG', 'PR'

  • city_code: Name of the city where the store is located.

  • store_name: Name of the store selling that product. If store_name is equal to AS_XYZ, it represents an auxiliary store. This means that while the samples contained are for the most part valid, the store name can't be used in learning tasks

  • product_name: Name of the product. All products have product_name, so this column does not contain any NaN value.

  • collection_section: Name of the section of the product, used for organizing the store menu. Common values are "drinks", "our pizzas", "desserts". All products have collection_section associated to it, so this column does not have any NaN value in it.

  • product_description: A detailed description of the product, describing ingredients and components of it. Not all products of our data have description, so this column contains NaN values that must be removed by the researchers as a preprocessing step.

  • subset: Categorical variable indicating if the sample belongs to the Training, Validation or Test set. The respective values in the DataFrame are ["train", "val", "test"].

  • HIER: Boolean variable indicating if the store name can be used to retrieve product information (indicating if the store_name is not an auxiliary store (with code AS_XYZ)).

  • s3_path: Path of the image of the product in the disk location you chose.

Dataset Statistics

A notebook analyzing several dataset statistics is provided in notebooks/FooDI-ML Dataset Stats Analytics.ipynb.

Benchmark

To run the benchmark included in the original paper one must follow the procedure listed in the following link.

The hyperparameters of the model are included here link

Citation

This paper is under review. In the meanwhile you can cite it in arxiv: https://arxiv.org/abs/2110.02035

Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022